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Abstract

Does a halfspace filled with randomly placed cylinders behave, on

average, like a homogeneous halfspace? To answer this, we compare

the reflection from a homogeneous halfspace with the average reflec-

tion from a halfspace filled with cylinders. In the end we reach an

absurd result for cylinders with Dirichlet boundary condition. An

explanation for this absurd result would be great.

Keywords: blue sky thinking

1 Reflection from a halfspace

We consider an incident plane wave

uin(x, y) = ei(αx+βy), with (α, β) = k(cos θin, sin θin),
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and assume time-harmonic dependence of the form e−iωt. The incident wave

uin(x, y) is heading towards the interface x = 0, which divides two homo-

geneous materials. The material on the left (right) has wavenumber and

density k and ρ (k∗ and ρ∗). The reflected and transmitted wave will be of

the form

uR = Rei(−xα+yβ) and uT = T ei(xα∗+yβ∗),

where k∗(cos θ∗, sin θ∗) = (α∗, β∗).

The boundary conditions for the acoustic pressure are

uin + uR = uT and
1

ρ

∂uin

∂x
+

1

ρ

∂uR

∂x
=

1

ρ∗

∂uT

∂x
, for x = 0,

from which we get Snell’s law

k sin θin = k∗ sin θ∗, (1)

and

R =
q∗ cos θin − cos θ∗
q∗ cos θin + cos θ∗

, T =
2q∗ cos θin

q∗ cos θin + cos θ∗
, with q∗ =

kρ∗
k∗ρ

. (2)

Note that 1 +R = T .

From this we can establish bounds such as |R| ≤ 1, can you prove this?

What happens when k∗ is a complex number? Later, we will see that the

reflection coefficient from a random mix of cylinders (with Dirichlet boundary

condition), is unbounded! And the problem is in the limit for small k. This

is likely wrong, and we are not sure why.
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2 Reflection from multiple random cylinders

2.1 Multipole method for cylinders

Here we give the exact theory for scalar multiple wave scattering from a finite

number N of circular cylinders. The pressure u outside all the cylinders

satisfies the scalar Helmholtz equation

∇2u+ k2u = 0, (3)

and inside the jth cylinder the pressure uj satisfies

∇2uj + k2
ouj = 0, for j = 1, 2, . . . , N, (4)

where ∇2 is the two-dimensional Laplacian and

k = ω/c and ko = ω/co. (5)

We use for each cylinder the polar coordinates

Rj = ∥x− xj∥, Θj = arctan

(
y − yj
x− xj

)
, (6)

where xj is the centre of the j-th cylinder and x = (x, y) is an arbitrary point

with origin O. See Figure 1 for a schematic of the material properties and

coordinate systems. Then we can define uj as the scattered pressure field
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Figure 1: represents a multi-species material comprising different species of
cylinders to the right of the origin O = (0, 0). The vector xj points to the
centre of the j-th cylinder, with a local polar coordinate system (Rj,Θj).
Each cylinder has a radius aj, density ρj, and wave speed cj, while the
background has density ρ and wave speed c. The vector k is the direction of
the incident plane wave.

from the j-th cylinder,

uj(Rj,Θj) =
∞∑

m=−∞

Am
j Z

mHm(kRj)e
imΘj , for Rj > aj, (7)

where Hm are Hankel functions of the first kind, Am
j are arbitrary coefficients

and Zm characterises the type of scatterer:

Zm =
qJ ′

m(ka)Jm(koa)− Jm(ka)J
′
m(koa)

qH ′
m(ka)Jm(koa)−Hm(ka)J ′

m(koa)
= Z−m, (8)

with q = (ρok)/(ρko). In the limits q → 0 or q → ∞, the coefficients for

Dirichlet or Neumann boundary conditions are recovered, respectively.
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The pressure outside all cylinders is the sum of the incident wave uin and

all scattered waves,

u(x, y) = uin(x, y) +
N∑
j=1

uj(Rj,Θj). (9)

and the total field inside the j-th cylinder is

uI
j(Rj,Θj) =

∞∑
m=−∞

Bm
j Jm(kjRj)e

imΘj , for Rj < aj. (10)

The unknown coefficients are determined through the boundary condi-

tions of continuity of pressure and normal velocity on the cylinder bound-

aries:

u = uI
j and

1

ρ

∂u

∂Rj

=
1

ρo

∂uI
j

∂Rj

, on Rj = a for j = 1, . . . , N. (11)

When the cylinders are far apart, the solution for the Am
j are similar to

the solution for one lone cylinder scattering the incident wave uin, which is

Am
j = −ime−imθineixj ·k. (12)

Using the above and assuming the cylinders are far apart, the scattered field

far away from the cylinder (7) becomes

lim
Rj→∞

uj(Rj,Θj) ∼
√

2

πkRj

f◦(Θj − θin)e
ikRj−iπ/4, (13)
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where

f◦(θ) = −
∞∑

m=−∞

eimθZm. (14)

2.2 Ensemble average

For an introduction to ensemble-averaging of multiple scattering see Foldy (1945).

Consider a configuration of N circular cylinders centred at x1,x2, . . . ,xN .

Each xj is in the region RN , where n = N/|RN | is the total number density

and |RN | is the area ofRN . The probability of the cylinders being in a specific

configuration is given by the probability density function p(x1,x2, . . . ,xN),

so that ∫
p(x1)dx1 =

∫ ∫
p(x1,x2)dx1dx2 = . . . = 1. (15)

And as the cylinders are indistinguishable: p(x1,x2) = p(x2,x1).

Furthermore, we have

p(x1, . . . ,xN) = p(xj)p(x1, . . . ,xN |xj), (16)

p(x1, . . . ,xN |xj) = p(xℓ|xj)p(x1, . . . ,xN |xℓ,xj), (17)

where p(x1, . . . ,xN |xj) is the conditional probability of having cylinders cen-

tred at x1, . . . ,xN (not including xj), given that the j-th cylinder is fixed

at xj. Likewise, p(x1, . . . ,xN |xℓ,xj) is the conditional probability of having

cylinders centred at x1, . . . ,xN (not including xℓ and xj) given that there

are already two cylinders centred at xℓ and xj.

Given some function F (x1, . . . ,xN), we denote its average, or expected
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value, by

⟨F ⟩ =
∫

. . .

∫
F (x1, . . . ,xN)p(x1, . . . ,xN)dx1 . . . dxN . (18)

If we fix the location and properties of the j-th cylinder, xj and average over

all the properties of the other cylinders, we obtain a conditional average of

F given by

⟨F ⟩xj
=

∫
. . .

∫
F (x1, . . . ,xN)p(x1, . . . ,xN |xj)dx1 . . .xN , (19)

where we do not integrate over xj. The average and conditional averages are

related by

⟨F ⟩ =
∫

⟨F ⟩xj
p(xj) dxj and ⟨F ⟩xj

=

∫
⟨F ⟩xjxℓ

p(xℓ) dxℓ, (20)

where ⟨F ⟩xℓxj
is the conditional average when fixing both xj and xℓ, and

⟨F ⟩xℓxj
= ⟨F ⟩xjxℓ

.

We can now calculate the average total pressure (incident plus scattered),

measured at some position x outside of RN , by averaging (9) to obtain

⟨u(x, y)⟩ = uin(x, y)+
N∑
j=1

∫
. . .

∫
uj(Rj,Θj)p(x1, . . . ,xN)dx1 . . . dxN , (21)

where ⟨uin(x, y)⟩ = uin(x, y), because the incident field is independent of the

scattering configuration. We can then rewrite the average outgoing wave uj

by fixing the properties of the j-th cylinder xj and using equation (16) to
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reach

⟨u(x, y)⟩ − uin(x, y) =
N∑
j=1

∫
⟨uj(Rj,Θj)⟩xj

p(xj)dxj = N

∫
⟨u1(R1,Θ1)⟩x1p(x1)dx1.

(22)

Likewise, for the conditionally averaged scattered field (7) measured at x we

obtain

⟨u1(R1,Θ1)⟩x1 =
∞∑

m=−∞

⟨Am
1 ⟩x1Z

mH(1)
m (kR1)e

imΘ1 . (23)

We will use the simplest approximations possible, which are a random

uniform distribution

p(x1) =
1

|RN |
, (24)

which combined with (22) and (23), and taking the limit N → ∞ with RN

turning into a halfspace x1 > 0, leads to

⟨u(x, y)⟩ = uin(x, y) + n

∞∑
m=−∞

Zm

∫
x1>0

⟨Am
1 ⟩x1H

(1)
m (kR1)e

imΘ1dx1. (25)

When x < 0, the above turns into the incident wave plus the average reflected

field from the halfspace x > 0.
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2.3 Effective medium approach

The simplest approach is to assume that, on average, the wave exciting a

scatterer is a plane wave. That is, for x1 > 0, we assume

⟨Am
1 ⟩x1 = ime−imθ∗Am∗e

ix·k∗ , for x > 0, (26)

where the constant factor ime−imθ∗ is just for later convenience, Am∗ is an

unknown constant (for now), and we define

k∗ = (α∗, β) := k∗(cos θ∗, sin θ∗), (27)

and from Snell’s law

k∗ sin θ∗ = k sin θin, (28)

noting that both θ∗ and k∗ are complex numbers.

Am∗(s1) + 2πn
∞∑

n=−∞

∫
S
An∗(s2)

[Nn−m(ka12, k∗a12)

k2 − k2
∗

]
dsn2 = 0, (29)

∞∑
n=−∞

ein(θin−θ∗)

∫
S
An∗(s2)ds

n
2 = (α∗ − α)

αi

2n
, (30)

where

dsn2 = Zn(s2)p(s2)ds2, (31)

we used whole-correction and ignored the boundary layer (which disappears

in the low-frequency limit anyway). The above equations are sufficient to

completely determine k∗ and An∗ .
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First using k∗ = ck/c∗:

Nn(ka12, k∗a12) ∼
2ic|n|

πc
|n|
∗

+O(k2),

because this does not depend on the species, we can move it outside the

integral in (29), multiple Zm(s1)p(s1) on both sides of the equation and then

integrate in s1 to reach,

⟨Am∗⟩m +
4in

k2

c2∗
c2∗ − c2

1∑
n=−1

c|n−m|

c
|n−m|
∗

⟨An∗⟩n⟨Zm⟩ = 0, (32)

where

⟨Am∗⟩m =

∫
S
Am∗(so)ds

m
o , ⟨Zn⟩ =

∫
S
Zn(so)p(so)dso, (33)

⟨Z0⟩ = ik2π

4
⟨ao

βo − β

βo

⟩, ⟨Z1⟩ = ⟨Z−1⟩ = ik2π

4
⟨a2o

ρ− ρo
ρ+ ρo

⟩, (34)

ao is the radius∗ of the species so, and we define ⟨f⟩m = ⟨fZm⟩.

Equation (32) is now in the same form as the single species equation. By

evaluating (32) for m = −1, 0, 1, we reach three equations with unknowns

⟨A−1∗⟩−1, ⟨A0∗⟩0, ⟨A1∗⟩1, and c∗. By forming a matrix equation for the

⟨Am∗⟩m, then setting the determinant of this matrix to zero, and solving for

c∗, we reach

c2∗ =
β∗

ρ∗
, with

1

β∗
=

1− nπ⟨a2o⟩
β

+ nπ⟨a
2
o

βo

⟩, ρ∗ = ρ
1− nπ⟨a2o ρ−ρo

ρ+ρo
⟩

1 + nπ⟨a2o ρ−ρo
ρ+ρo

⟩ . (35)

∗If you find the appearance of the radius ao strange, have a look at the next section.
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Using the above in (32), we can reach

⟨A0∗⟩0 = 2
β − β∗

ρ− ρ∗

√
ρρ∗
ββ∗

⟨A1∗⟩1 and ⟨A−1∗⟩−1 = ⟨A1∗⟩1. (36)

To determine ⟨A1∗⟩ we use (30), which leads to

⟨A1∗⟩1 = (ρ− ρ∗) cos θin
ia2k2π

4ϕ

cos θin −
√

ρ∗β
ρβ∗

cos θ∗√
β∗ρρ∗

β

(
β
β∗

− 1
)
− (ρ− ρ∗) cos(θin − θ∗)

.

(37)

2.4 A discrete number of species

Here we show what are the effective properties (35) when there are a discrete

number of species.

The definition of the probability density p(so), is that given any point

x, p(so) is the probability of finding a particle of species so centred at x.

This means that if there are S species uniformly distributed we can use

p(so)dso =
no
n
, where no is the number density of the species so. For example:

nπ⟨f(βo, ρo)a
2
o⟩ = nπ

S∑
j=1

a2jf(βj, ρj)
nj
n

=
S∑

j=1

ϕjf(βj, ρj), (38)

where ϕj = πa2jnj is the volume fraction of the j-th species.

This leads to the discrete version of the effective properties:

1

β∗
=

1− ϕ

β
+
∑
j

ϕj

βj

, ρ∗ = ρ
1−∑

j ϕj
ρ−ρj
ρ+ρj

1 +
∑

j ϕj
ρ−ρj
ρ+ρj

. (39)
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2.5 Average low-frequency reflection

To calculate the average reflected field (25), we use (26),

(∇2 + k2
∗)⟨Am

1 ⟩x1 and (∇2 + k2
∗)H

(1)
m (kR1)e

imΘ1 ,

which allows us to use Green’s second identity, or more specifically equation

(88) from Gower et al. (2017), to calculate

∫
x1>0

eiα∗x1+iβy1H(1)
m (kR1)e

imΘ1dx1 = e−iαx+iβy 2

α

(−i)−mi

α + α∗
e−imθin . (40)

Substituting the above into (25) we get

⟨u(x, y)⟩ = uin(x, y) +Roe
−iαx+iβy, θref = π − θ∗ − θin, (41)

Ro =
1

a2πk cos θin

2iϕ

k cos θin + k∗ cos θ∗

∞∑
m=−∞

eimθref ⟨Am∗⟩m. (42)

Substituting (36) and (37) we reach, after algebraic manipulation, that

Ro = R =
q∗ cos θin − cos θ∗
q∗ cos θin + cos θ∗

, with q∗ =

√
ρ∗β∗

ρβ
.
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