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Abstract

Does a halfspace filled with randomly placed cylinders behave, on
average, like a homogeneous halfspace? To answer this, we compare
the reflection from a homogeneous halfspace with the average reflec-
tion from a halfspace filled with cylinders. In the end we reach an
absurd result for cylinders with Dirichlet boundary condition. An

explanation for this absurd result would be great.

Keywords: blue sky thinking

1 Reflection from a halfspace

We consider an incident plane wave

(T, y) = el with (a, B) = k(cos by, sin byy,),
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and assume time-harmonic dependence of the form e~“!. The incident wave

uin(z,y) is heading towards the interface x = 0, which divides two homo-

geneous materials. The material on the left (right) has wavenumber and

density k and p (k. and p,.). The reflected and transmitted wave will be of

the form

up = R0 and  up = Tellotvss),

where k,(cosb,,sinf,) = (o, By).

The boundary conditions for the acoustic pressure are

1 8um n lﬁuR . i@uT

Uin + ur = ur and ;8x pﬁ_p*a’ for x =0,
from which we get Snell’s law
ksin 0, = k, sin 0,
and
R ¢ cos By, — cos 9*’ _ 2q, cos Oy,  with ¢, = kp*.
s cos Oy, + cos 0, @« cos O;, + cos 0, k.p

Note that 1 + R=1T.

From this we can establish bounds such as |R| < 1, can you prove this?

What happens when k, is a complex number? Later, we will see that the

reflection coefficient from a random mix of cylinders (with Dirichlet boundary

condition), is unbounded! And the problem is in the limit for small k. This

is likely wrong, and we are not sure why.



2 Reflection from multiple random cylinders

2.1 Multipole method for cylinders

Here we give the exact theory for scalar multiple wave scattering from a finite

number N of circular cylinders. The pressure u outside all the cylinders

satisfies the scalar Helmholtz equation

Viu 4 k*u =0,

and inside the jth cylinder the pressure u; satisfies

V2Uj+k3uj:07 forj=1,2,..., N,

where V? is the two-dimensional Laplacian and

k=w/c and k,=w/c,.

We use for each cylinder the polar coordinates

R =[x —xll, ©;=arctan (y—yj) )

ZL’—(L'j

(6)

where x; is the centre of the j-th cylinder and x = (z,y) is an arbitrary point

with origin O. See Figure [1] for a schematic of the material properties and

coordinate systems. Then we can define u; as the scattered pressure field



Figure 1: represents a multi-species material comprising different species of
cylinders to the right of the origin O = (0,0). The vector x; points to the
centre of the j-th cylinder, with a local polar coordinate system (R;, ;).
Each cylinder has a radius a;, density p;, and wave speed c;, while the
background has density p and wave speed c. The vector k is the direction of
the incident plane wave.

from the j-th cylinder,

Uj(Rj, @]) = Z ATZmHm(kRj)eim@j, for Rj > aj, (7)

m=—00

where H,, are Hankel functions of the first kind, A}" are arbitrary coefficients

and Z™ characterises the type of scatterer:

m @I (ka) T (ko) = Ty (ka) g, (kea)
2= U (k@) T (ko) — Ho(Ra) T (koa) 2 (8)

with ¢ = (p.k)/(pk,). In the limits ¢ — 0 or ¢ — oo, the coefficients for

Dirichlet or Neumann boundary conditions are recovered, respectively.



The pressure outside all cylinders is the sum of the incident wave u;, and

all scattered waves,

N
(e, y) = un(z,y) + Y u;(R;, 0;). (9)

j=1

and the total field inside the j-th cylinder is

ub(R;,0;) Z Bl (kiR;)e™®,  for R; < aj. (10)

m=—00

The unknown coefficients are determined through the boundary condi-

tions of continuity of pressure and normal velocity on the cylinder bound-

aries:
10 1 Out
u:u§ and ;%:p—ﬁ, on Rj=a for j=1,...,N. (11)
j o O11;

When the cylinders are far apart, the solution for the A" are similar to

the solution for one lone cylinder scattering the incident wave u;,, which is
. mbin gix; k-
Al = i Min e (12)

Using the above and assuming the cylinders are far apart, the scattered field

far away from the cylinder becomes

[ 2 . \aikR;—in/4
£131MUJ<RJ’@> Wkijo(@J Oin)e ; (13)



where
o0

L) == Y emizm (14)

2.2 Ensemble average

For an introduction to ensemble-averaging of multiple scattering see Foldy| (1945 ).
Consider a configuration of N circular cylinders centred at x;,Xs,...,Xy.
Each x; is in the region Ry, where n = N/|Ry| is the total number density
and |R | is the area of R y. The probability of the cylinders being in a specific
configuration is given by the probability density function p(x1,Xs,...,Xy),

so that

/p<x1)dx1 = //p(x1,><2)czx1dx2 =...=1 (15)

And as the cylinders are indistinguishable: p(x;,x2) = p(x2, X1).

Furthermore, we have

p(Xl,..-,XN):p(xj)p<xl,..-,XN|Xj), (16)
p(xla cee 7XN|Xj) = p(Xf|Xj)p(X17 cee 7XN|X€7Xj)7 (17)
where p(x1,...,Xn|x;) is the conditional probability of having cylinders cen-

tred at xi,...,xy (not including x;), given that the j-th cylinder is fixed
at x;. Likewise, p(x1,...,Xn|Xs, X;) is the conditional probability of having
cylinders centred at xi,...,xxy (not including x, and x;) given that there
are already two cylinders centred at x, and x;.

Given some function F(xi,...,xy), we denote its average, or expected



value, by

<F>:/.../F(xl,...,XN)p(xl,...,XN)dxl...de. (18)

If we fix the location and properties of the j-th cylinder, x; and average over
all the properties of the other cylinders, we obtain a conditional average of

F' given by

(F)y, :/.../F(Xl,...,XN)p(Xl,...,XN|Xj)dX1...XN, (19)

where we do not integrate over x;. The average and conditional averages are

related by

<F> = /<F>xjp(xj) de and <F>xj - /<F>x]-xep<xﬁ) dXZ? (20)

where (F)y,x, is the conditional average when fixing both x; and x,, and
<F>X5Xj = <F>ijr
We can now calculate the average total pressure (incident plus scattered),

measured at some position x outside of Ry, by averaging @[) to obtain

(u(z,y)) :uin(aj,y)+z/.../uj(Rj,@j)p(xl,...,xN)dX1...de, (21)

where (up,(x,y)) = uin(z, y), because the incident field is independent of the
scattering configuration. We can then rewrite the average outgoing wave u;

by fixing the properties of the j-th cylinder x; and using equation to



reach

N

(u(w,y)) — iz, y) =) /(’%‘(Rja 0;))x,p(x;)dx; = N/(“l(Rla ©1))x, p(x1)dx1.

=1

(22)

Likewise, for the conditionally averaged scattered field measured at x we

obtain

(1(R1,01))s, = Y (A 2" H (kRy )™ (23)

We will use the simplest approximations possible, which are a random

uniform distribution
1

W, (24)

p(x1) =

which combined with and (23)), and taking the limit N — oo with Ry

turning into a halfspace z; > 0, leads to
(ule, ) = (o) + 0 > 27 [ (AP HOR)E dx,. (25)
m=—o00 x1>0

When x < 0, the above turns into the incident wave plus the average reflected

field from the halfspace = > 0.



2.3 Effective medium approach

The simplest approach is to assume that, on average, the wave exciting a

scatterer is a plane wave. That is, for z; > 0, we assume

<A’in>x1 = ime—ime*Am*eix~k*’ for T > 0’ (26)

where the constant factor i™e™"% is just for later convenience, A,,, is an

unknown constant (for now), and we define

k., = (., ) := ki(cosb,,sinb,), (27)

and from Snell’s law

kysinf, = ksin 6;,, (28)

noting that both 6, and k, are complex numbers.

A (s1) +2m Y /S A (52) {N“—m;fcfzf*“@ st =0, (29)

n=—0o0

N (o n ol
E em(9m 04) / An* (52)d52 = (Cy* — a)2—’ (30)
S n

n=—0oo

where

dsy = Z"(s2)p(ss)dss, (31)

we used whole-correction and ignored the boundary layer (which disappears
in the low-frequency limit anyway). The above equations are sufficient to

completely determine k, and A,, .



First using k, = ck/c,:

2iclnl

Nn(]{?alg, k*alz) ~ W -+ O(]{ZZ),

T Cx

because this does not depend on the species, we can move it outside the
integral in , multiple Z™(s1)p(s;1) on both sides of the equation and then

integrate in s; to reach,

. din 2 L ol S
(Am.) +ﬁc§—02 nZ_:l Ln_m‘ (An.)"(Z™) =0, (32)
where
o)™ = [tz (2 = [ ZGopisds. 63
0 7ik2ﬂ- /Bo_ﬁ 1\ _ -1 7@ 2P — Po
R It el C N

a, is the radiug of the species s,, and we define (f)™ = (fZ™).

Equation is now in the same form as the single species equation. By
evaluating for m = —1,0,1, we reach three equations with unknowns
(A1 )7 (Ap,)°, (A1), and ¢,. By forming a matrix equation for the
(A,,.)™, then setting the determinant of this matrix to zero, and solving for

C4, we reach

2 P—Po
o B .1 1-nr{a}) a? L —nmlagre)
co=—, with — = — 2 4+ an(=2), p, = Lo (35
Px B B <ﬁo> P pl + n7.[.<a2_p po> ( )

0 p+po

*If you find the appearance of the radius a, strange, have a look at the next section.
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Using the above in , we can reach

(A0 =27 ‘ﬁ*,/gg’;mhf and (A1)t = (A (36)

P — Px

To determine (A;,) we use (30), which leads to

.
02k c0s b — y/ 35, c0s b
(A1) = (p = pa) cos i 49 /s B p |
En (B* - 1> — (p = ps) cos(Oin — 0,)

(37)

2.4 A discrete number of species

Here we show what are the effective properties when there are a discrete
number of species.

The definition of the probability density p(s,), is that given any point
x, p(s,) is the probability of finding a particle of species s, centred at .
This means that if there are S species uniformly distributed we can use

p(so)ds, = %=, where n, is the number density of the species s,. For example:

S S

IWN%M@ZMXEM%m%:EMMMw% (38)

j=1 j=1

where ¢; = Wainj is the volume fraction of the j-th species.

This leads to the discrete version of the effective properties:

p—pj
L _1-¢ ¢ 172%m,
__—+Z_’ Pe =P p—p; " (39)
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2.5 Average low-frequency reflection

To calculate the average reflected field (25)), we use (26),
(V2 4+ E2)(A™),, and (V2 + kHHD(kRy)e™®",

which allows us to use Green’s second identity, or more specifically equation

(88) from Gower et al| (2017)} to calculate

. | gy 2 (<D™
/ plosz1+iBy1 Hr(i)(k‘Rl)elmeldxl _ e—la:c—l—lﬁy_we—lmem‘ (4())
10 o o+ oy

Substituting the above into (25)) we get

<U($, y)) = uin(ma y) + Roe—iax—&-ib’y’ eref =T = 9* - eim (41)

1 21(25 Z eiméref <Am*>m. (42)

~ a2mk cos Oin k cos 0y, + ki cos 0, .

o

=—00

Substituting and we reach, after algebraic manipulation, that

with ¢, = p*ﬁ*.

PP

s cos by, — cos 0,

R,=R

g cos by, + cosh,’
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