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This document is a review of the Percus-Yevick approximation as it is used in
[2].

1 Hard spheres
For hard spheres in a particulate material without boundaries, the Percus-Yevick
(P-Y) approximation [3] can be evaluated exactly. We follow [4,5] closely, and start
by defining the function

h(r) = g(r)− 1, r ∈ R3

This function satisfies the Ornstein-Zernike equation

h(r) = c(r) + n0

∫∫∫
R3

c(r′)h(r − r′) dv′, r ∈ R3

where c(r) is the direct correlation function. The integral defines the indirect cor-
relation function h(r). Ornstein-Zernike equation is of convolution type, and its
Fourier transform is

ĥ(ξ) = ĉ(ξ) + n0ĉ(ξ)ĥ(ξ), ξ ∈ R3

with solution
ĥ(ξ) =

ĉ(ξ)

1− n0ĉ(ξ)
, ξ ∈ R3

The structure factor S(ξ) is defined as

S(ξ) = 1 + n0ĥ(ξ)

The direct correlation function c(r) is now determined. It is convenient to in-
troduce a new function y(r) as (R = 2a)

y(r) =

{
−c(r), r < R

g(r), r ≥ R
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2 The Percus-Yevick approximation
In the P-Y approximation, we replace h(r)−c(r) with y(r)−1 everywhere in space.
We then have

c(r) =

{
−y(r), r < R

h(r) + 1− g(r) = 0, r ≥ R

and the Ornstein-Zernike equation becomes

y(r)− 1 = −n0

∫∫∫
r′<R

y(r′)(g(r − r′)− 1) dv′, r ∈ R3

or
y(r) = 1 + n0

∫∫∫
r′<R

|r−r′|<R

y(r′) dv′ − n0

∫∫∫
r′<R

|r−r′|≥R

y(r′)(y(r − r′)− 1) dv′

This has a closed form solution for c(r), r < R, which is [5]

c(r) = c(r) =

{
α + β(r/R) + δ(r/R)3, r < R

0, r ≥ R

where 
α = −(1 + 2f)2

(1− f)4

β = 6f
(1 + f/2)2

(1− f)4


δ = −f

(1 + 2f)2

2(1− f)4

f =
n0πR
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with Fourier transform

ĉ(ξ) = ĉ(ξ) =

∫∫∫
R3

c(r)e−iξ·r dv = 4π

∫ R

0

(
α + β(r/R) + δ(r/R)3

)
j0(ξr) r

2 dr

=
4πR3

ξR

∫ 1

0

(
αx+ βx2 + δx4

)
sin(ξRx) dx = 4πR3F (ξR)

where we introduced the function F (x), defined as

F (x) = A(x) +B(x) sin(x) + C(x) cos(x) = O(1/x2), as x → ∞ (2.1)

where 
A(x) =

24δ

x6
− 2β

x4

B(x) =
α + 2β + 4δ

x3
− 24δ

x5

C(x) = −α + β + δ

x2
+

2β + 12δ

x4
− 24δ

x6
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Finally,

h(r) = h(r) =
1

8π3

∫∫∫
R3

ĉ(ξ)

1− n0ĉ(ξ)
eiξ·r dξ3 =

1

2π2r

∫ ∞

0

ĉ(ξ)

1− n0ĉ(ξ)
sin(ξr) ξ dξ

Reformulate the solution to

h(r) =
2R

πr

∫ ∞

0

xF (x)

1− 24fF (x)
sin(xr/R) dx

and g(r) = h(r) + 1.
The integral in the computation of the function h(r) is poorly converging at

infinity, and we need to extract the slowly converging tail. Make an asymptotic
analysis of the integrand as x → ∞. We get

xF (x)

1− 24fF (x)
= G(x) +O(x−3)

where
G(x) = (α + 2β + 4δ)

sin(x)

x2
− (α + β + δ)

cos(x)

x
(2.2)

Use the integrals [1] ∫ ∞

0

cos(x) sin(ηx)

x
dx =

π

2
, η > 1

and ∫ ∞

0

sin(x) sin(ηx)

x2
dx =

π

2
, η > 1

to evaluate (η = r/R ∈ [1,∞))

h(r) = 9f
1 + f

2η(1− f)3
+

2

ηπ

∫ ∞

0

(
xF (x)

1− 24fF (x)
−G(x)

)
sin(ηx) dx

3 Examples
In Figure 1, we illustrate the calculations made in this note for different volume
fractions f .
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Figure 1: The hole correction (HC) and the Percus-Yevick approximation for vol-
ume fractions f = 0.05, f = 0.1, f = 0.15, and f = 0.2.
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