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Abstract

This Supplementary Material is a self-contained document providing further

detail on the calculation of effective wavenumbers for uniformly distributed multi-

species inclusions. The formulae for multi-species cylinders and spheres are given

here, in addition to expressions describing reflection from a halfspace filled with

cylinders. Code to implement the formulas is given in github.com/arturgower/

EffectiveWaves.jl. For detailed derivations see our paper (A. L. Gower et al., 2017),

which shows how to introduce a pair-correlation between the species.

Keywords: polydisperse, multiple scattering, multi-species, effective waves, quasicrys-

talline approximation, statistical methods
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1 Effective waves for uniformly distributed species

We consider a halfspace x > 0 filled with S types of inclusions (species) that are uniformly

distributed. The fields are governed by the scalar wave equation:

∇2u+ k2u = 0, (in the background material) (1)

∇2u+ k2
ju = 0, (inside the j-th scatterer), (2)

The background and species material properties are summarised in Table 1. The goal is

to find an effective homogeneous medium with wavenumber k∗, where waves propagate,

in an ensemble average sense, with the same speed and attenuation as they would in a

material filled with scatterers. See A. Gower (2017) for the code that implements the

formulas below.

Below we present the effective wavenumber, for any incident wavenumber and moder-

ate number fraction, when the species are either all cylinders or spheres∗. For cylindrical

inclusions we also present the reflection of a plane wave from this multi-species material.

Background properties: wavenumber k density ρ sound speed c
Specie properties: number density nj density ρj sound speed cj radius aj
total number density n effective wavenumber k∗ species min. distance aj` > aj + a`

Table 1: Summary of material properties and notation. The index j refers to properties
of the j-th species. Note a typical choice for aj` is aj` = c(aj + a`), where c = 1.01.

∗In principal these formulas can be extended to include different shaped scatterers by using Waterman’s
T-matrix Waterman (1971); Varadan et al. (1978); Mishchenko et al. (1996)
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2 Cylindrical species

We consider an incident wave

uin = eik·x with k · x = kx cos θin + ky sin θin, (3)

and angle of incidence θin from the x-axis, exciting a material occupying the halfspace

x > 0. Then, assuming low number density n (or low volume fraction
∑

` πa
2
`n`), the

effective transmitted wavenumber k∗ becomes

k2
∗ = k2 − 4in〈f◦〉(0)− 4in2〈f◦◦〉(0) +O(n3), (4)

with 〈f◦〉 and 〈f◦◦〉 given by (8). The above reduces to Linton and Martin (2005) equa-

tion (81) for a single species in the low frequency limit; This equation (81) has been con-

firmed by several independent methods Martin et al. (2010); Martin and Maurel (2008);

Chekroun et al. (2012); Kim (2010).

The ensemble-average reflected wave measured at x < 0 is given by

〈uref〉 =
n

α2
[R1 + nR2] e−iαx+iβy +O(n3), (5)

where

R1 = i〈f◦〉(θref), θref = π − 2θin, (6)

R2 =
2〈f◦〉(0)

k2 cos2 θin

[sin θin cos θin〈f◦〉′(θref)− 〈f◦〉(θref)] + i〈f◦◦〉(θref), (7)

which reduces to Martin (2011) equations (40-41) for a single species, which they show
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agrees with other known results for small k.

The ensemble-average far-field pattern and multiple-scattering pattern are†

〈f◦〉(θ) = −
S∑
`=1

∞∑
n=−∞

n`
n
Zn
` einθ,

〈f◦◦〉(θ) = −π
S∑

`,j=1

∞∑
m,n=−∞

a2
`jdn−m(ka`j)

n`nj
n2

Zn
` Z

m
j einθ, (8)

where dm(x) = J ′m(x)H ′m(x) + (1− (m/x)2)Jm(x)Hm(x), the Jm are Bessel functions, the

Hm are Hankel functions of the first kind and a`j > a` + aj is some fixed distance. The

Zm
j describe the type of scatterer:

Zm
j =

qjJ
′
m(kaj)Jm(kjaj)− Jm(kaj)J

′
m(kjaj)

qjH ′m(kaj)Jm(kjaj)−Hm(kaj)J ′m(kjaj)
= Z−mj , (9)

with q = (ρjcj)/(ρc). For instance, taking the limits q → 0 or q →∞, recovers Dirichlet

or Neumann boundary conditions, respectively.

2.1 Any volume fraction

The series expansions for low number density (or volume fraction) do not work when the

particles are strong scatterers. In these cases we need to use formulas valid for any volume

fraction.

†Note we introduced the terminology “multiple-scattering pattern”.
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Borrowing equations (45 - 47) from A. L. Gower et al. (2017) we have

k∗ sin θ∗ = k sin θin with k∗ = (α∗, β) := k∗(cos θ∗, sin θ∗), (10)∑
`

∞∑
n=−∞

(2πn`Qn−mj` (k∗)Z
n
` + δmnδj`)An` = 0, (11)

2
∞∑

n=−∞

ein(θin−θ∗)
∑
`

n`Z
n
` An` = (α∗ − α)iα, (12)

in terms of the unknown parameters An` and k∗, where

Qnj`(k∗) =
Nn(kaj`, k∗aj`)

k2 − k2
∗

+ Xn(sj, s`), (13)

Nn(x, y) = xH ′n(x)Jn(y)− yHn(x)J ′n(y), (14)

and Xn = 0 for hole correction, or for a more general pair distribution

Xn(sj, s`) =

∫
aj`<R<āj`

Hn(kR)Jn(k∗R)χ(R|sj, s`)RdR, (15)

where we assume that when the distance between two cylinders Rj` > āj`, then the pair

correlation is the same as hole correction.

In the notation given in A. L. Gower et al. (2017) we replaced Am∗ (s2)→ Am` , p(s2)→

δ(s2−s`)
n`
n

, n =
∑

` nj, n =
∑

` nj, Z
n(s2)→ Zn

j , X∗ → Xn−m(sj, s`) and here we assumed

no boundary-layer x̄ = 0.

Now we approximate (12,11) by summing n from −N to N and then rewriting these

equations as

∑
`

M j`A` = 0, =⇒ det(M j`) = 0, (16)
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where

(A`)n = An` , (M j`)mn = 2πn`Z
n
` Qn−mj` (k∗) + δmnδj`, (17)

and n,m = −N,−N + 1, . . . N .

The strategy to solve these equations is to: find k∗ such that the determnant in (16)

is zero and then find the eigenvector A of (M j`) with the smallest eignvalue; use Snell’s

law (10) to find θ∗; finally use (12) to determine the magnitude of A.

One concern, is that the solutions k∗ to (16) are not unique.

2.1.1 Reflection coefficient

Borrowing equation (88) from A. L. Gower et al. (2017), the average reflection from a

halfspace is

〈uref(x, y)〉 = eik(−x cos θin+y sin θin)R, (18)

R =
2i

α(α + α∗)

S∑
`=1

∞∑
n=−∞

einθrefn`An`Zn
` , (19)

with θref = π − θin − θ∗.

3 Spherical species

The results here are derived by applying the theory in our paper to the results in Linton

and Martin (2006). We omit the details as the result follows by direct analogy.
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For spherical inclusions the transmitted wavenumber becomes,

k2
∗ = k2 − n

4πi

k
〈F◦〉(0) + n2 (4π)2

k4
〈F◦◦〉+O(n3), (20)

where for spheres we define the ensemble-average far-field pattern and multiple-scattering

pattern,

〈F◦〉(θ) = −
∞∑
n=0

Pn(cos θ)
S∑
j=1

(2n+ 1)ζnj
nj
n
, (21)

〈F◦◦〉 =
i(4π)2

2

∞∑
n,p=0

S∑
j,`=1

∑
q

√
(2n+ 1)(2p+ 1)

(4π)3/2

√
2q + 1G(n, p, q)kaj`Dq(kaj`)ζ

n
j ζ

p
`

njn`
n2

,

where

Dm(x) = xj′m(x)(xh′m(x) + hm(x)) + (x2 −m(m+ 1))jm(x)jm(x),

Pn are Legendre polynomials, jm are spherical Bessel functions, hm are spherical Hankel

functions of the first kind and

ζmj =
qjj
′
m(kaj)jm(kjaj)− jm(kaj)j

′
m(kjaj)

qjh′m(kaj)jm(kjaj)− hm(kaj)j′m(kjaj)
= ζ−mj , (22)

with q = (ρjcj)/(ρc), where the G is a Gaunt coefficient and is equal to

G(n, p, q) =

√
(2n+ 1)(2p+ 1)(2q + 1)

2
√

4π

∫ π

0

Pn(cos θ)Pp(cos θ)Pq(cos θ) sin θdθ.

See Caleap et al. (2012) for details on reflection from a single species, although, to our

knowledge, a formula for reflection from a single species valid for moderate number fraction

and any wavenumber has not yet been deduced.
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