# Average reflection from a random particulate material 

Artur L. Gower ${ }^{a}$<br>${ }^{a}$ School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL,UK

April 21, 2018


#### Abstract

Does a halfspace filled with randomly placed cylinders behave, on average, like a homogeneous halfspace? To answer this, we compare the reflection from a homogeneous halfspace with the average reflection from a halfspace filled with cylinders. In the end we reach an absurd result for cylinders with Dirichlet boundary condition. An explanation for this absurd result would be great.


Keywords: blue sky thinking

## 1 Reflection from a halfspace

We consider an incident plane wave

$$
u_{\text {in }}(x, y)=\mathrm{e}^{\mathrm{i}(\alpha x+\beta y)}, \quad \text { with } \quad(\alpha, \beta)=k\left(\cos \theta_{\text {in }}, \sin \theta_{\text {in }}\right)
$$

and assume time-harmonic dependence of the form $\mathrm{e}^{-\mathrm{i} \omega t}$. The incident wave $u_{\mathrm{in}}(x, y)$ is heading towards the interface $x=0$, which divides two homogeneous materials. The
material on the left (right) has wavenumber and density $k$ and $\rho$ ( $k_{*}$ and $\rho_{*}$ ). The reflected and transmitted wave will be of the form

$$
u_{R}=R \mathrm{e}^{\mathrm{i}(-x \alpha+y \beta)} \quad \text { and } \quad u_{T}=T \mathrm{e}^{\mathrm{i}\left(x \alpha_{*}+y \beta_{*}\right)},
$$

where $k_{*}\left(\cos \theta_{*}, \sin \theta_{*}\right)=\left(\alpha_{*}, \beta_{*}\right)$.
The boundary conditions for the acoustic pressure are

$$
u_{\mathrm{in}}+u_{R}=u_{T} \quad \text { and } \quad \frac{1}{\rho} \frac{\partial u_{\mathrm{in}}}{\partial x}+\frac{1}{\rho} \frac{\partial u_{R}}{\partial x}=\frac{1}{\rho_{*}} \frac{\partial u_{T}}{\partial x}, \quad \text { for } \quad x=0
$$

from which we get Snell's law

$$
\begin{equation*}
k \sin \theta_{\mathrm{in}}=k_{*} \sin \theta_{*}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
R=\frac{q_{*} \cos \theta_{\mathrm{in}}-\cos \theta_{*}}{q_{*} \cos \theta_{\mathrm{in}}+\cos \theta_{*}}, \quad \text { with } \quad q_{*}=\frac{k \rho_{*}}{k_{*} \rho} . \tag{2}
\end{equation*}
$$

From this we can establish bounds such as $|R| \leq 1$, can you prove this? What happens when $k_{*}$ is a complex number? Later, we will see that the reflection coefficient from a random mix of cylinders (with Dirichlet boundary condition), is unbounded! And the problem is in the limit for small $k$. This is likely wrong, and we are not sure why.

## 2 Reflection from multiple random cylinders

### 2.1 Multipole method for cylinders

Here we give the exact theory for scalar multiple wave scattering from a finite number $N$ of circular cylinders. The pressure $u$ outside all the cylinders satisfies the scalar Helmholtz
equation

$$
\begin{equation*}
\nabla^{2} u+k^{2} u=0, \tag{3}
\end{equation*}
$$

and inside the $j$ th cylinder the pressure $u_{j}$ satisfies

$$
\begin{equation*}
\nabla^{2} u_{j}+k_{o}^{2} u_{j}=0, \quad \text { for } j=1,2, \ldots, N \tag{4}
\end{equation*}
$$

where $\nabla^{2}$ is the two-dimensional Laplacian and

$$
\begin{equation*}
k=\omega / c \quad \text { and } \quad k_{o}=\omega / c_{o} . \tag{5}
\end{equation*}
$$

We use for each cylinder the polar coordinates

$$
\begin{equation*}
R_{j}=\left\|\mathbf{x}-\mathbf{x}_{j}\right\|, \quad \Theta_{j}=\arctan \left(\frac{y-y_{j}}{x-x_{j}}\right) \tag{6}
\end{equation*}
$$

where $\mathbf{x}_{j}$ is the centre of the $j$-th cylinder and $\mathbf{x}=(x, y)$ is an arbitrary point with origin $O$. See Figure 1 for a schematic of the material properties and coordinate systems. Then we can define $u_{j}$ as the scattered pressure field from the $j$-th cylinder,

$$
\begin{equation*}
u_{j}\left(R_{j}, \Theta_{j}\right)=\sum_{m=-\infty}^{\infty} A_{j}^{m} Z^{m} H_{m}\left(k R_{j}\right) \mathrm{e}^{\mathrm{i} m \Theta_{j}}, \quad \text { for } \quad R_{j}>a_{j}, \tag{7}
\end{equation*}
$$

where $H_{m}$ are Hankel functions of the first kind, $A_{j}^{m}$ are arbitrary coefficients and $Z^{m}$ characterises the type of scatterer:

$$
\begin{equation*}
Z^{m}=\frac{q J_{m}^{\prime}(k a) J_{m}\left(k_{o} a\right)-J_{m}(k a) J_{m}^{\prime}\left(k_{o} a\right)}{q H_{m}^{\prime}(k a) J_{m}\left(k_{o} a\right)-H_{m}(k a) J_{m}^{\prime}\left(k_{o} a\right)}=Z^{-m}, \tag{8}
\end{equation*}
$$

with $q=\left(\rho_{o} k\right) /\left(\rho k_{o}\right)$. In the limits $q \rightarrow 0$ or $q \rightarrow \infty$, the coefficients for Dirichlet or


Figure 1: represents a multi-species material comprising different species of cylinders to the right of the origin $O=(0,0)$. The vector $\mathbf{x}_{j}$ points to the centre of the $j$-th cylinder, with a local polar coordinate system $\left(R_{j}, \Theta_{j}\right)$. Each cylinder has a radius $a_{j}$, density $\rho_{j}$, and wave speed $c_{j}$, while the background has density $\rho$ and wave speed $c$. The vector $\mathbf{k}$ is the direction of the incident plane wave.

Neumann boundary conditions are recovered, respectively.
The pressure outside all cylinders is the sum of the incident wave $u_{\mathrm{in}}$ and all scattered waves,

$$
\begin{equation*}
u(x, y)=u_{\mathrm{in}}(x, y)+\sum_{j=1}^{N} u_{j}\left(R_{j}, \Theta_{j}\right) . \tag{9}
\end{equation*}
$$

and the total field inside the $j$-th cylinder is

$$
\begin{equation*}
u_{j}^{\mathrm{I}}\left(R_{j}, \Theta_{j}\right)=\sum_{m=-\infty}^{\infty} B_{j}^{m} J_{m}\left(k_{j} R_{j}\right) \mathrm{e}^{\mathrm{i} m \Theta_{j}}, \quad \text { for } \quad R_{j}<a_{j} . \tag{10}
\end{equation*}
$$

The unknown coefficients are determined through the boundary conditions of conti-
nuity of pressure and normal velocity on the cylinder boundaries:

$$
\begin{equation*}
u=u_{j}^{\mathrm{I}} \quad \text { and } \quad \frac{1}{\rho} \frac{\partial u}{\partial R_{j}}=\frac{1}{\rho_{o}} \frac{\partial u_{j}^{\mathrm{I}}}{\partial R_{j}}, \quad \text { on } \quad R_{j}=a \text { for } j=1, \ldots, N . \tag{11}
\end{equation*}
$$

When the cylinders are far apart, the solution for the $A_{j}^{m}$ are similar to the solution for one lone cylinder scattering the incident wave $u_{\text {in }}$, which is

$$
\begin{equation*}
A_{j}^{m}=-\mathrm{i}^{m} \mathrm{e}^{-\mathrm{i} m \theta_{\mathrm{in}} \mathrm{n}} \mathrm{e}^{\mathrm{i} \mathbf{x}_{j} \cdot \mathbf{k}} . \tag{12}
\end{equation*}
$$

Using the above and assuming the cylinders are far apart, the scattered field far away from the cylinder (7) becomes

$$
\begin{equation*}
\lim _{R_{j} \rightarrow \infty} u_{j}\left(R_{j}, \Theta_{j}\right) \sim \sqrt{\frac{2}{\pi k R_{j}}} f_{\circ}\left(\Theta_{j}-\theta_{\mathrm{in}}\right) \mathrm{e}^{\mathrm{i} k R_{j}-\mathrm{i} \pi / 4} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{\circ}(\theta)=-\sum_{m=-\infty}^{\infty} \mathrm{e}^{\mathrm{i} m \theta} Z^{m} . \tag{14}
\end{equation*}
$$

### 2.2 Ensemble average

For an introduction to ensemble-averaging of multiple scattering see Foldy (1945).
Consider a configuration of $N$ circular cylinders centred at $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$. Each $\mathbf{x}_{j}$ is in the region $\mathcal{R}_{N}$, where $\mathfrak{n}=N /\left|\mathcal{R}_{N}\right|$ is the total number density and $\left|\mathcal{R}_{N}\right|$ is the area of $\mathcal{R}_{N}$. The probability of the cylinders being in a specific configuration is given by the probability density function $p\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)$, so that

$$
\begin{equation*}
\int p\left(\mathbf{x}_{1}\right) d \mathbf{x}_{1}=\iint p\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) d \mathbf{x}_{1} d \mathbf{x}_{2}=\ldots=1 \tag{15}
\end{equation*}
$$

And as the cylinders are indistinguishable: $p\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=p\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)$.
Furthermore, we have

$$
\begin{align*}
& p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=p\left(\mathbf{x}_{j}\right) p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \mid \mathbf{x}_{j}\right)  \tag{16}\\
& p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \mid \mathbf{x}_{j}\right)=p\left(\mathbf{x}_{\ell} \mid \mathbf{x}_{j}\right) p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \mid \mathbf{x}_{\ell}, \mathbf{x}_{j}\right), \tag{17}
\end{align*}
$$

where $p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \mid \mathbf{x}_{j}\right)$ is the conditional probability of having cylinders centred at $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ (not including $\mathbf{x}_{j}$ ), given that the $j$-th cylinder is fixed at $\mathbf{x}_{j}$. Likewise, $p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \mid \mathbf{x}_{\ell}, \mathbf{x}_{j}\right)$ is the conditional probability of having cylinders centred at $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ (not including $\mathbf{x}_{\ell}$ and $\mathbf{x}_{j}$ ) given that there are already two cylinders centred at $\mathbf{x}_{\ell}$ and $\mathbf{x}_{j}$.

Given some function $F\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$, we denote its average, or expected value, by

$$
\begin{equation*}
\langle F\rangle=\int \ldots \int F\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) d \mathbf{x}_{1} \ldots d \mathbf{x}_{N} \tag{18}
\end{equation*}
$$

If we fix the location and properties of the $j$-th cylinder, $\mathbf{x}_{j}$ and average over all the properties of the other cylinders, we obtain a conditional average of $F$ given by

$$
\begin{equation*}
\langle F\rangle_{\mathbf{x}_{j}}=\int \ldots \int F\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \mid \mathbf{x}_{j}\right) d \mathbf{x}_{1} \ldots \mathbf{x}_{N} \tag{19}
\end{equation*}
$$

where we do not integrate over $\mathbf{x}_{j}$. The average and conditional averages are related by

$$
\begin{equation*}
\langle F\rangle=\int\langle F\rangle_{\mathbf{x}_{j}} p\left(\mathbf{x}_{j}\right) d \mathbf{x}_{j} \quad \text { and } \quad\langle F\rangle_{\mathbf{x}_{j}}=\int\langle F\rangle_{\mathbf{x}_{j} \mathbf{x}_{\ell}} p\left(\mathbf{x}_{\ell}\right) d \mathbf{x}_{\ell} \tag{20}
\end{equation*}
$$

where $\langle F\rangle_{\mathbf{x}_{\ell} \mathbf{x}_{j}}$ is the conditional average when fixing both $\mathbf{x}_{j}$ and $\mathbf{x}_{\ell}$, and $\langle F\rangle_{\mathbf{x}_{\ell} \mathbf{x}_{j}}=$ $\langle F\rangle_{\mathbf{x}_{j} \mathbf{x}_{\ell}}$.

We can now calculate the average total pressure (incident plus scattered), measured
at some position $\mathbf{x}$ outside of $\mathcal{R}_{N}$, by averaging (9) to obtain

$$
\begin{equation*}
\langle u(x, y)\rangle=u_{\text {in }}(x, y)+\sum_{j=1}^{N} \int \ldots \int u_{j}\left(R_{j}, \Theta_{j}\right) p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) d \mathbf{x}_{1} \ldots d \mathbf{x}_{N} \tag{21}
\end{equation*}
$$

where $\left\langle u_{\text {in }}(x, y)\right\rangle=u_{\text {in }}(x, y)$, because the incident field is independent of the scattering configuration. We can then rewrite the average outgoing wave $u_{j}$ by fixing the properties of the $j$-th cylinder $\mathbf{x}_{j}$ and using equation (16) to reach

$$
\begin{equation*}
\langle u(x, y)\rangle-u_{\mathrm{in}}(x, y)=\sum_{j=1}^{N} \int\left\langle u_{j}\left(R_{j}, \Theta_{j}\right)\right\rangle_{\mathbf{x}_{j}} p\left(\mathbf{x}_{j}\right) d \mathbf{x}_{j}=N \int\left\langle u_{1}\left(R_{1}, \Theta_{1}\right)\right\rangle_{\mathbf{x}_{1}} p\left(\mathbf{x}_{1}\right) d \mathbf{x}_{1} . \tag{22}
\end{equation*}
$$

Likewise, for the conditionally averaged scattered field (7) measured at x we obtain

$$
\begin{equation*}
\left\langle u_{1}\left(R_{1}, \Theta_{1}\right)\right\rangle_{\mathbf{x}_{1}}=\sum_{m=-\infty}^{\infty}\left\langle A_{1}^{m}\right\rangle_{\mathbf{x}_{1}} Z^{m} H_{m}^{(1)}\left(k R_{1}\right) \mathrm{e}^{\mathrm{i} m \Theta_{1}} \tag{23}
\end{equation*}
$$

We will use the simplest approximations possible, which are a random uniform distribution

$$
\begin{equation*}
p\left(\mathbf{x}_{1}\right)=\frac{1}{\left|\mathcal{R}_{N}\right|}, \tag{24}
\end{equation*}
$$

which combined with (22) and (23), and taking the limit $N \rightarrow \infty$ with $\mathcal{R}_{N}$ turning into a halfspace $x_{1}>0$, leads to

$$
\begin{equation*}
\langle u(x, y)\rangle=u_{\mathrm{in}}(x, y)+\mathfrak{n} \sum_{m=-\infty}^{\infty} Z^{m} \int_{x_{1}>0}\left\langle A_{1}^{m}\right\rangle_{\mathbf{x}_{1}} H_{m}^{(1)}\left(k R_{1}\right) \mathrm{e}^{\mathrm{i} m \Theta_{1}} d \mathbf{x}_{1} . \tag{25}
\end{equation*}
$$

When $x<0$, the above turns into the incident wave plus the average reflected field from the halfspace $x>0$.

### 2.3 Effective medium approach

The simplest approach is to assume that, on average, the wave exciting a scatterer is a plane wave. That is, for $x_{1}>0$, we assume

$$
\begin{equation*}
\left\langle A_{1}^{m}\right\rangle_{\mathbf{x}_{1}}=\mathrm{i}^{m} \mathrm{e}^{-\mathrm{i} m \theta_{*}} \mathcal{A}_{*}^{m} \mathrm{e}^{\mathrm{i} \mathbf{x} \cdot \mathbf{k}_{*}}, \quad \text { for } \quad x>0, \tag{26}
\end{equation*}
$$

where the constant factor $\mathrm{i}^{m} \mathrm{e}^{-\mathrm{i} m \theta_{*}}$ is just for later convenience, $\mathcal{A}_{*}^{m}$ is an unknown constant (for now), and we define

$$
\begin{equation*}
\mathbf{k}_{*}=\left(\alpha_{*}, \beta\right):=k_{*}\left(\cos \theta_{*}, \sin \theta_{*}\right), \tag{27}
\end{equation*}
$$

and from Snell's law

$$
\begin{equation*}
k_{*} \sin \theta_{*}=k \sin \theta_{\mathrm{in}}, \tag{28}
\end{equation*}
$$

noting that both $\theta_{*}$ and $k_{*}$ are complex numbers.

$$
\begin{align*}
& \mathcal{A}_{*}^{m}\left(\mathbf{s}_{1}\right)+2 \pi \mathfrak{n} \sum_{n=-\infty}^{\infty} \int_{\mathcal{S}} \mathcal{A}_{*}^{n}\left(\mathbf{s}_{2}\right)\left[\frac{\mathcal{N}_{n-m}\left(k a_{12}, k_{*} a_{12}\right)}{k^{2}-k_{*}^{2}}\right] d \mathbf{s}_{2}^{n}=0,  \tag{29}\\
& \sum_{n=-\infty}^{\infty} \mathrm{e}^{\mathrm{i} n\left(\theta_{\text {in }}-\theta_{*}\right)} \int_{\mathcal{S}} \mathcal{A}_{*}^{n}\left(\mathbf{s}_{2}\right) d \mathbf{s}_{2}^{n}=\left(\alpha_{*}-\alpha\right) \frac{\alpha \mathrm{i}}{2 \mathfrak{n}} \tag{30}
\end{align*}
$$

where

$$
\begin{equation*}
d \mathbf{s}_{2}^{n}=Z^{n}\left(\mathbf{s}_{2}\right) p\left(\mathbf{s}_{2}\right) d \mathbf{s}_{2}, \tag{31}
\end{equation*}
$$

we used whole-correction and ignored the boundary layer (which disappears in the lowfrequency limit anyway). The above equations are sufficient to completely determine $k_{*}$ and $\mathcal{A}_{*}^{n}$.

First using $k_{*}=c k / c_{*}$ :

$$
\mathcal{N}_{n}\left(k a_{12}, k_{*} a_{12}\right) \sim \frac{2 \mathrm{i} c^{|n|}}{\pi c_{*}^{|n|}}+\mathcal{O}\left(k^{2}\right),
$$

because this does not depend on the species, we can move it outside the integral in (29), multiple $Z^{m}\left(\mathbf{s}_{1}\right) p\left(\mathbf{s}_{1}\right)$ on both sides of the equation and then integrate in $\mathbf{s}_{1}$ to reach,

$$
\begin{equation*}
\left\langle\mathcal{A}_{*}^{m}\right\rangle^{m}+\frac{4 \mathrm{in}}{k^{2}} \frac{c_{*}^{2}}{c_{*}^{2}-c^{2}} \sum_{n=-1}^{1} \frac{c^{|n-m|}}{c_{*}^{|n-m|}}\left\langle\mathcal{A}_{*}^{n}\right\rangle^{n}\left\langle Z^{m}\right\rangle=0, \tag{32}
\end{equation*}
$$

where

$$
\begin{gather*}
\left\langle\mathcal{A}_{*}^{m}\right\rangle^{m}=\int_{\mathcal{S}} \mathcal{A}_{*}^{m}\left(\mathbf{s}_{o}\right) d \mathbf{s}_{o}^{m}, \quad\left\langle Z^{n}\right\rangle=\int_{\mathcal{S}} Z^{n}\left(\mathbf{s}_{o}\right) p\left(\mathbf{s}_{o}\right) d \mathbf{s}_{o},  \tag{33}\\
\left\langle Z^{0}\right\rangle=\frac{\mathrm{i} k^{2} \pi}{4}\left\langle a_{o} \frac{\beta_{o}-\beta}{\beta_{o}}\right\rangle, \quad\left\langle Z^{1}\right\rangle=\left\langle Z^{-1}\right\rangle=\frac{\mathrm{i} k^{2} \pi}{4}\left\langle a_{o}^{2} \frac{\rho-\rho_{o}}{\rho+\rho_{o}}\right\rangle, \tag{34}
\end{gather*}
$$

$a_{o}$ is the radius* of the species $\mathbf{s}_{o}$, and we define $\langle f\rangle^{m}=\left\langle f Z^{m}\right\rangle$.
Equation (32) is now in the same form as the single species equation. By evaluating (32) for $m=-1,0,1$, we reach three equations with unknowns $\left\langle\mathcal{A}^{-1}{ }_{*}\right\rangle^{-1},\left\langle\mathcal{A}_{*}^{0}\right\rangle^{0}$, $\left\langle\mathcal{A}_{*}^{1}\right\rangle^{1}$, and $c_{*}$. By forming a matrix equation for the $\left\langle\mathcal{A}^{m}{ }_{*}\right\rangle^{m}$, then setting the determinant of this matrix to zero, and solving for $c_{*}$, we reach

$$
\begin{equation*}
c_{*}^{2}=\frac{\beta_{*}}{\rho_{*}}, \quad \text { with } \quad \frac{1}{\beta_{*}}=\frac{1-\mathfrak{n} \pi\left\langle a_{o}^{2}\right\rangle}{\beta}+\mathfrak{n} \pi\left\langle\frac{a_{o}^{2}}{\beta_{o}}\right\rangle, \quad \rho_{*}=\rho \frac{1-\mathfrak{n} \pi\left\langle a_{o}^{2} \frac{\rho-\rho_{o}}{\rho+\rho_{o}}\right\rangle}{1+\mathfrak{n} \pi\left\langle a_{o}^{2} \frac{\rho-\rho_{o}}{\rho+\rho_{o}}\right\rangle} . \tag{35}
\end{equation*}
$$

Using the above in (32), we can reach

$$
\begin{equation*}
\left\langle\mathcal{A}_{*}^{0}\right\rangle^{0}=2 \frac{\beta-\beta_{*}}{\rho-\rho_{*}} \sqrt{\frac{\rho \rho_{*}}{\beta \beta_{*}}}\left\langle\mathcal{A}_{*}^{1}\right\rangle^{1} \quad \text { and } \quad\left\langle\mathcal{A}^{-1}{ }_{*}\right\rangle^{-1}=\left\langle\mathcal{A}^{1}{ }_{*}\right\rangle^{1} . \tag{36}
\end{equation*}
$$

[^0]To determine $\left\langle\mathcal{A}^{1}{ }_{*}\right\rangle$ we use (30), which leads to

$$
\begin{equation*}
\left\langle\mathcal{A}_{*}^{1}\right\rangle^{1}=\left(\rho-\rho_{*}\right) \cos \theta_{\text {in }} \frac{\mathrm{i} a^{2} k^{2} \pi}{4 \phi} \frac{\cos \theta_{\mathrm{in}}-\sqrt{\frac{\rho_{*} \beta}{\rho \beta_{*}}} \cos \theta_{*}}{\sqrt{\frac{\beta_{*} \rho \rho_{*}}{\beta}}\left(\frac{\beta}{\beta_{*}}-1\right)-\left(\rho-\rho_{*}\right) \cos \left(\theta_{\mathrm{in}}-\theta_{*}\right)} . \tag{37}
\end{equation*}
$$

### 2.4 A discrete number of species

Here we show what are the effective properties (39) when there are a discrete number of species.

The definition of the probability density $p\left(\mathbf{s}_{o}\right)$, is that given any point $\boldsymbol{x}, p\left(\mathbf{s}_{o}\right)$ is the probability of finding a particle of species $\mathbf{s}_{o}$ centred at $\boldsymbol{x}$. This means that if there are $S$ species uniformly distributed we can use $p\left(\mathbf{s}_{o}\right) d \mathbf{s}_{o}=\frac{\mathfrak{n}_{o}}{\mathfrak{n}}$, where $\mathfrak{n}_{o}$ is the number density of the species $\mathbf{s}_{o}$. For example:

$$
\begin{equation*}
\mathfrak{n} \pi\left\langle f\left(\beta_{o}, \rho_{o}\right) a_{o}^{2}\right\rangle=\mathfrak{n} \pi \sum_{j=1}^{S} a_{j}^{2} f\left(\beta_{j}, \rho_{j}\right) \frac{\mathfrak{n}_{j}}{\mathfrak{n}}=\sum_{j=1}^{S} \phi_{j} f\left(\beta_{j}, \rho_{j}\right), \tag{38}
\end{equation*}
$$

where $\phi_{j}=\pi a_{j}^{2} \mathfrak{n}_{j}$ is the volume fraction of the $j$-th species.
This leads to the discrete version of the effective properties:

$$
\begin{equation*}
\frac{1}{\beta_{*}}=\frac{1-\phi}{\beta}+\sum_{j} \frac{\phi_{j}}{\beta_{j}}, \quad \rho_{*}=\rho \frac{1-\sum_{j} \phi_{j} \frac{\rho-\rho_{j}}{\rho+\rho_{j}}}{1+\sum_{j} \phi_{j} \frac{\rho-\rho_{j}}{\rho+\rho_{j}}} . \tag{39}
\end{equation*}
$$

### 2.5 Average low-frequency reflection

To calculate the average reflected field (25), we use (26),

$$
\left(\nabla^{2}+k_{*}^{2}\right)\left\langle A_{1}^{m}\right\rangle_{\mathbf{x}_{1}} \quad \text { and } \quad\left(\nabla^{2}+k_{*}^{2}\right) H_{m}^{(1)}\left(k R_{1}\right) \mathrm{e}^{\mathrm{i} m \Theta_{1}}
$$

which allows us to use Green's second identity, or more specifically equation (88) from Gower et al. (2017), to calculate

$$
\begin{equation*}
\int_{x_{1}>0} \mathrm{e}^{\mathrm{i} \alpha_{*} x_{1}+\mathrm{i} \beta y_{1}} H_{m}^{(1)}\left(k R_{1}\right) \mathrm{e}^{\mathrm{i} m \Theta_{1}} d \mathbf{x}_{1}=\mathrm{e}^{-\mathrm{i} \alpha x+\mathrm{i} \beta y} \frac{2}{\alpha} \frac{(-\mathrm{i})^{-m} \mathrm{i}}{\alpha+\alpha_{*}} \mathrm{e}^{-\mathrm{i} m \theta_{\mathrm{in}}} . \tag{40}
\end{equation*}
$$

Substituting the above into (25) we get

$$
\begin{align*}
& \langle u(x, y)\rangle=u_{\text {in }}(x, y)+R_{o} \mathrm{e}^{-\mathrm{i} \alpha x+\mathrm{i} \beta y}, \quad \theta_{\text {ref }}=\pi-\theta_{*}-\theta_{\text {in }},  \tag{41}\\
& R_{o}=\frac{1}{a^{2} \pi k \cos \theta_{\mathrm{in}}} \frac{2 \mathrm{i} \phi}{k \cos \theta_{\text {in }}+k_{*} \cos \theta_{*}} \sum_{m=-\infty}^{\infty} \mathrm{e}^{\mathrm{i} m \theta_{\mathrm{ref}}}\left\langle\mathcal{A}_{*}^{m}\right\rangle^{m} . \tag{42}
\end{align*}
$$

Substituting (36) and (37) we reach, after algebraic manipulation, that

$$
R_{o}=R=\frac{q_{*} \cos \theta_{\mathrm{in}}-\cos \theta_{*}}{q_{*} \cos \theta_{\mathrm{in}}+\cos \theta_{*}}, \quad \text { with } \quad q_{*}=\sqrt{\frac{\rho_{*} \beta_{*}}{\rho \beta}} .
$$

## References

Foldy, Leslie L. (1945). "The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers". In: Physical Review 67(3), p. 107. URL: http://journals.aps.org/pr/abstract/10.1103/PhysRev. 67.107 (visited on 09/14/2016).

Gower, Artur L. et al. (2017). "Reflection from a multi-species material and its transmitted effective wavenumber". In: arXiv:1712.05427 [physics]. arXiv: 1712.05427. URL: http://arxiv.org/abs/1712.05427 (visited on 01/13/2018).


[^0]:    *If you find the appearance of the radius $a_{o}$ strange, have a look at the next section.

