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Algorithm 975: TMATROM—A T-Matrix Reduced Order
Model Software

M. GANESH, Colorado School of Mines
S. C. HAWKINS, Macquarie University

The T-matrix (TMAT) of a scatterer fully describes the way the scatterer interacts with incident fields
and scatters waves, and is therefore used extensively in several science and engineering applications. The
T-matrix is independent of several input parameters in a wave propagation model and hence the offline
computation of the T-matrix provides an efficient reduced order model (ROM) framework for performing
online scattering simulations for various choices of the input parameters. The authors developed and math-
ematically analyzed a numerically stable formulation for computing the T-matrix (J. Comput. Appl. Math.
234 (2010), 1702–1709). The TMATROM software package provides an object-oriented implementation of
the numerically stable formulation and can be used in conjunction with the user’s preferred forward solver
for the two-dimensional Helmholtz model. We compare TMATROM with standard methods to compute the
T-matrix for a range of two-dimensional test scatterers with large aspect ratios and acoustic sizes. Our
numerical results demonstrate the robust numerical stability of the TMATROM implementation, even with
scatterers for which the standard methods are numerically unstable. The efficiency and flexibility of the
TMATROM software package to handle a wide range of two-dimensional scatterers with various shapes and
material properties are also demonstrated.
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1. INTRODUCTION

We evaluate the numerical performance of our object-oriented Matlab package TMA-
TROM for computing the transition matrix (T-matrix) for efficient simulation of wave
scattering in two dimensions. The package is described in detail in the accompanying
user manual [Ganesh and Hawkins 2016]. The T-matrix of a wave propagation model
is independent of various typical input parameters (such as those determining the inci-
dent wave) and hence provides an efficient framework for performing online scattering
simulations for various choices of the input parameters. This approach is particularly
useful for parameter-dependent multiple scattering configurations, especially dynamic
configurations or uncertain configurations.
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9:2 M. Ganesh and S. C. Hawkins

The TMATROM package implements the authors’ numerically stable algorithm
[Ganesh and Hawkins 2009] for computing the T-matrix of a two-dimensional scat-
terer. Routines required to use the T-matrix for a range of scattering problems—such
as scattering by configurations with several scatterers (see Ganesh and Hawkins [2016,
Section 8])—are also implemented, including evaluation of regular and radiating wave-
function expansions, and the translation-addition theorem (see Ganesh and Hawkins
[2016, Sections 5–7]).

The two-dimensional wave scattering model arises for various physical phenom-
ena, including acoustic [Robertson and Rudy III 1998], electromagnetic [McPhedran
et al. 1999; Little et al. 2015], or water waves [Tao et al. 2007; Montiel et al. 2015;
Kagemoto and Yue 1986] interacting in three dimensions with cylinders (not neces-
sarily with circular cross section). The two-dimensional model is also an important
model for testing forward and inverse codes [Colton and Kress 2012, page 72]. The
T-matrix method is particularly useful for parameter-dependent applications where
simulations are required for multiple parameter values. Examples include monostatic
cross section computations, multiple scattering, and stochastic problems [Ganesh and
Hawkins 2013]. Consequently, this package will have extensive applications in several
disciplines, including oceanography, physics, meteorology, and atmospheric science. We
refer to the T-matrix reference database [Mishchenko et al. 2014] and the extensive
references therein for particular applications of the T-matrix.

The T-matrix was first introduced in Waterman [1965]. Initially, the T-matrix was
developed by Waterman for electromagnetic scattering by three-dimensional scatterers.
In 1969, an acoustic scattering counterpart (in both two and three dimensions) was
developed [Waterman 1969]. In Waterman’s original works, the T-matrix was computed
using the Null Field Method (NFM), which expands the surface field solution of the
null field integral equation using regular (Rg) and radiating wavefunctions, and leads
to the T-matrix in the form −(Rg Q) Q−1 where Rg Q and Q are square matrices whose
entries are given by surface integrals involving regular and radiating wavefunctions,
respectively. Offline computation and storage of the T-matrix facilitates fast online
evaluation of the coefficients of the radiating scattered field using simple matrix-vector
multiplication. Here the input data is the coefficient vector of the incident field.

Although the NFM is used extensively, it is well known that it is numerically un-
stable for scatterers that deviate significantly from a circle (e.g., scatterers that have
a large aspect ratio) or are acoustically large [Somerville et al. 2012; Khlebtsov 2010].
The numerical instability is attributed to the integration of Hankel functions on the
scatterer surface and manifests through poor conditioning of the matrix Q [Mishchenko
and Travis 1994; Mishchenko et al. 1996; Petrov and Shkuratov 2007] and loss of preci-
sion in evaluating the entries in Qusing quadrature [Waterman 2007, 2009; Somerville
et al. 2012; Havemann and Baran 2004].

There is extensive literature concerned with strategies to avoid or mitigate the
numerical instability in the NFM. The most general way to address loss of preci-
sion in the quadrature is to use extended precision arithmetic [Havemann and Baran
2004; Khlebtsov 2010]. However, for certain geometries—such as ellipses and capped
cylinders—it is possible to enhance numerical stability by removing large leading order
terms in the integrand that integrate to zero [Waterman 2007, 2009; Sarkissian et al.
1993; Somerville et al. 2013]. For ellipsoids, it is also possible to exploit symmetry in
Q to obtain a more numerically stable expression [Waterman 1999].

Ill conditioning in Q has been addressed by subdividing Q to obtain better numerical
stability in the matrix factorisation [Petrov and Shkuratov 2007] and by using extended
precision arithmetic [Mishchenko and Travis 1994; Mishchenko et al. 1996]. Extended
precision arithmetic is slow compared with the standard double precision arithmetic,
and hence it is not desirable for large-scale applications. We are not aware of any double
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precision implementation of the NFM that is numerically stable, without restrictions
on the scatterer shape and acoustic size.

It is important to emphasize that the numerical difficulties discussed above relate
to the computation of the T-matrix using the NFM, and numerical instability is not
intrinsic to the T-matrix itself. Alternative methods to compute the T-matrix have been
explored, including the invariant imbedding method [Bi et al. 2013], expansion of the
surface field using discrete sources [Hellmers et al. 2011; Wriedt 2007], and methods
based on point matching regular wavefunction expansions of the incident field with
radiating wavefunction expansions of the scattered field on the scatterer boundary
[Farafonov et al. 2010; Rother and Wauer 2010; Nieminen et al. 2003]. However, because
the standard Point Matching Method (PMM) and its generalized form (GPMM) involve
Hankel functions on the scatterer surface, they are also prone to numerical instability.

Freely available implementations of many of the above T-matrix algorithms for elec-
tromagnetic scattering in three dimensions are available, and many are listed on
the Scattport website [Scattport 2016]. These include Fortran code implementing the
NFM [Mishchenko 2000; Mishchenko and Travis 2007; Mishchenko 2016] and the NFM
with discrete sources expansion of the surface field [Wriedt 2010]; and Matlab code im-
plementing the NFM for ellipsoids [Somerville et al. 2016] and the GPMM [Nieminen
et al. 2007; Nieminen 2014].We are not aware of any freely available T-matrix software
for scattering in two dimensions.

It has been recognized for a long time that numerical instability in T-matrix com-
putations could be avoided by using a boundary integral method to compute the T-
matrix [Martin 2003, Section 7.9.4]. The authors first developed a numerically stable
formulation for the T-matrix using a boundary integral method for three-dimensional
electromagnetic scattering [Ganesh and Hawkins 2010]. The authors also developed
acoustic scattering counterparts for three dimensions [Ganesh and Hawkins 2008a]
and two dimensions [Ganesh and Hawkins 2009].

The key to the numerical stability of the authors’ formulation [Ganesh and Hawkins
2010, 2008a, 2009] is moving the computation of the T-matrix entries from the scatterer
surface to the far field. In the far field, the Hankel functions are bounded and they
present no numerical difficulties. The move from the near field (on the scatterer surface)
to the far field requires simulation of the scattered fields induced by the interaction of
regular wavefunctions with the scatterer surface. These simulations can be performed
with any appropriate scattering algorithm.

The TMATROM package implements the authors’ numerically stable algo-
rithm [Ganesh and Hawkins 2009] using the Object Oriented (OO) features of Matlab.
The OO design of the package (see Ganesh and Hawkins [2016, Section 2]) permits a
choice of scattering algorithm using class inheritance from a solver base class. Classes
implementing a high-order Nyström solver [Colton and Kress 2012, Section 3.5] and
an open source solver (MPSPACK [Barnett and Betcke 2014]) are provided. Users may
define their own classes to incorporate their own solvers (see Ganesh and Hawkins
[2016, Part III]). This structure allows great flexibility in the shape and structure
of the scatterers that can be modelled. In particular, there are no limitations on the
shape of the scatterer provided a suitable algorithm is available for simulation of the
scattered fields.

In this article, we demonstrate the TMATROM package by computing the T-matrix
of several sound soft and sound hard test scatterers found in the literature. We show
the enhanced numerical stability of TMATROM compared with the NFM and point
matching methods. We also demonstrate the computational efficiency of the TMATROM
code. For instructions on how to obtain, install, and use TMATROM, and also details on
the structure and design of the software, we refer to the TMATROM manual [Ganesh
and Hawkins 2016].
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The article is structured as follows. In Section 2, we describe the two-dimensional
scattering problem and define the T-matrix and associated wavefunction expansions. In
Section 3, we briefly describe the NFM and the point matching methods. In Section 4, we
briefly describe the numerically stable formulation for the T-matrix that we implement
in TMATROM. In Section 5, we present detailed numerical results.

2. THE T-MATRIX METHOD

We consider the interaction of monochromatic time harmonic waves with a two-
dimensional scatterer D. After suppressing e−iωt time dependence, where ω denotes
the angular frequency, the associated spatially dependent field ψ satisfies the two-
dimensional Helmholtz equation

∇2ψ + k2ψ = 0 (1)

in the exterior of D where k = 2π/λ is the wavenumber and λ is the wavelength. It is
convenient to use polar coordinates (r, θ ) with origin contained inside the scatterer D.

In the scattering problem, an incident field ψ inc interacts with the scatterer to induce
a scattered field ψs. Both fields satisfy the Helmholtz equation (1). The scattered field
ψs additionally satisfies the Sommerfeld radiation condition [Colton and Kress 2012,
Section 2.1]

lim
r→∞ r

(
∂ψs

∂r
− ikψs

)
= 0. (2)

The corresponding far field ψ∞ of ψs is defined by

ψ∞(θ ) = lim
r→∞

√
re−ikrψs(r, θ ). (3)

In this work, we consider scattered fields induced by a boundary condition of the
form

Dψ = 0, on ∂ D, (4)

where ∂ D denotes the boundary of the scatterer D and ψ = ψs + ψ inc is the total field.
The operator D depends on the material properties of the scatterer. For a sound soft
scatterer D is the identity and for a sound hard scatterer D is the normal derivative
on ∂ D. The T-matrix method can also be used for scatterers with impedance boundary
conditions, and for penetrable scatterers. For penetrable scatterers there is an induced
interior field inside D and the boundary condition (4) is replaced by a transmission
boundary condition.

The T-matrix method is based on expansion of the incident field and scattered field,
respectively, in regular and radiating wavefunctions

Rg ψn(r, θ ) = J|n|(kr)einθ , (5)

ψn(r, θ ) = H(1)
|n| (kr)einθ , (6)

for n ∈ N. Here, Jn denotes the first kind Bessel function of order n and H(1)
n denotes

the first kind Hankel function of order n. In particular, the expansions are

ψ inc =
∑

n

fn Rg ψn, (7)

ψs =
∑

n

an ψn, (8)

where fn and an denote expansion coefficients. Here, the summation is implicitly over
n ∈ N; later we abuse the same notation for truncated expansions of the fields. For
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common incident fields such as plane waves or fields induced by point sources, the
expansion coefficients f = { fn} are known and given explicitly [Colton and Kress 2012,
Equations (3.88)–(3.89)] (see also Ganesh et al. [2012]). The unknown expansion coef-
ficients a = {an} of the scattered field are to be computed. The focus of this work is the
numerically stable computation of these coefficients using standard double precision
arithmetic, without any restriction on the shape and aspect ratio of the scatterer.

A consequence of the linearity of the Helmholtz equation (1) is that

a = T f, (9)

where T = {Tmn} is called the T-matrix or transition matrix of D. The numerical
stability of the computation of the unknown scattered field coefficients depends on the
quality of the T-matrix. An appropriate metric is required to quantify the quality of the
T-matrix.

In the sound soft and sound hard cases, the T-matrix satisfies the symmetry rela-
tion [Ganesh and Hawkins 2009, Theorem 1]

T + T ∗ − 2TT∗ = 0. (10)

Here, ∗ denotes the conjugate transpose. When the truncated T-matrix is computed
numerically, the discrepancy in this relation yields a useful measure of the error. In our
numerical results, we use the normalized discrepancy (see also Ganesh and Hawkins
[2016, Section 8])

‖T + T ∗ − 2T T ∗‖
‖T ‖ , (11)

where for a finite dimensional matrix A,

‖A‖ = max
n,m

|Anm|.

In practice, the series expansions (7) and (8) are truncated for |n| ≤ N and the resulting
truncated T-matrix is of size (2N + 1) × (2N + 1).

The celebrated Mie series for scattering by a spherical scatterer is a special case of
the T-matrix method where the T-matrix is diagonal and the 2N + 1 coefficients an for
|n| ≤ N are known analytically. The rule of thumb [Wiscombe 1980] for a sphere of
diameter 2R is to choose

N =
⎧⎨
⎩

x + 4x1/3 + 1, for x ≤ 8,
x + 4.05 x1/3 + 2, for x < 4200,
x + 4x1/3 + 2, otherwise,

(12)

where x = 2π R/λ is proportional to the acoustic size Rk/π of the scatterer.
Numerical evidence inspired a conjecture that the required truncation parameter N

for the T-matrix is independent of the shape of the scatterer, and hence the folklore that
the empirical choice (12) is also appropriate for computing the T-matrix of nonspherical
scatterers. Proving this conjecture was an open problem for several decades but was
proven in Ganesh et al. [2012, Theorems 3.6 and 3.7] for the authors’ numerically
stable T-matrix formulation.

3. ORIGINAL FORMULATIONS FOR COMPUTING ENTRIES OF THE T-MATRIX

In Waterman’s original formulation [Waterman 1969] the T-matrix is written

T = −(Rg Q) Q−1. (13)

Waterman gave two alternative expressions for setting up the matrices Q = {Qmn} and
Rg Q = {Rg Qmn}.
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9:6 M. Ganesh and S. C. Hawkins

First Expression. In the sound soft case

Qmn = i
4

∫
∂ D

∂

∂n
(Rg ψn) ψm ds, (14)

Rg Qmn = i
4

∫
∂ D

∂

∂n
(Rg ψn) Rg ψm ds, (15)

where n denotes the unit outward normal to the surface ∂ D. In the sound hard case

Qmn = i
4

∫
∂ D

∂ψm

∂n
Rg ψn ds, (16)

Rg Qmn = i
4

∫
∂ D

∂

∂n
(Rg ψm) Rg ψn ds. (17)

Second Expression.

Qmn = σ

2
+ i

8

∫
∂ D

∂

∂n

(
ψn Rg ψm

)
ds, (18)

Rg Qmn = i
8

∫
∂ D

∂

∂n

(
Rg ψn Rg ψm

)
ds, (19)

where in the sound soft case σ = 1 and the sound hard case σ = −1.
Thus, in the sound soft case the T-matrix is computed using Equation (13) and

either Equations (14) and (15) or Equations (18) and (19). In the sound hard case
the T-matrix is computed using Equation (13) and either Equations (16) and (17) or
Equations (18) and (19). Both of these methods for computing the T-matrix are called
the NFM or extended boundary condition method.

Although for some geometries the boundary integrals in Equations (14)–(19) can be
computed analytically, in general they must be computed numerically using appropri-
ate quadrature over ∂ D. The presence of the first kind Hankel function in the integrands
of Equations (14), (16), and (18) can lead to loss of precision in evaluating the entries
in Q using quadrature [Waterman 2007, 2009; Somerville et al. 2012; Havemann and
Baran 2004]. This is because the Hankel function in the radiating wavefunction (6)
grows unboundedly as n gets large and/or as r gets small. In practice, numerical dif-
ficulties also often arise with the inversion of the matrix Q in Equation (13), because
the matrix is badly conditioned [Mishchenko and Travis 1994; Mishchenko et al. 1996;
Petrov and Shkuratov 2007].

Numerical difficulties with the NFM have motivated alternative formulations for
the T-matrix [Farafonov et al. 2010; Hellmers et al. 2011; Rother and Wauer 2010].
Substituting Equations (7) and (8) into the boundary condition (4) and requiring the
boundary condition to hold at collocation points z1, . . . , zM ∈ ∂ D yields

T = −H−1 J, (20)

where H = {Hjn}, J = {Jjn}, and

Hjn = (Dψn)(zj), (21)

Jjn = (D Rg ψn)(zj). (22)

The number of collocation points M should be chosen according to the T-matrix trun-
cation parameter N. If M = 2N + 1, then the matrices H and J are square and the

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 9, Publication date: July 2017.



Algorithm 975: TMATROM—A T-matrix Reduced Order Model Software 9:7

resulting method is known as the PMM. If M > 2N+1, then the inversion of H in Equa-
tion (20) should be replaced with a least squares solve, and the resulting method is
known as the GPMM. The presence of the first kind Hankel function in Equation (21)
leads to numerical difficulties similar to those arising in the NFM.

4. TMATROM FORMULATION FOR THE T-MATRIX

The expressions for the T-matrix in the NFM, PMM, and GPMM involve the Hankel
function in the radiating wavefunction (6) evaluated on the boundary ∂ D. The un-
bounded behavior of the Hankel function in the near field (on ∂ D) is the cause of the
numerical difficulties with these methods. The TMATROM package uses an alternative
formulation developed by Ganesh and Hawkins [2010], Ganesh and Hawkins [2008a],
and Ganesh and Hawkins [2009], in which the calculation of the T-matrix is moved
from the near field to the far field (on the unit circle ∂ B). The Hankel functions are
bounded in the far field and hence the alternative formulation is numerically stable.

The TMATROM formulation involves using the regular wavefunctions Rg ψn individ-
ually as incident waves in the scattering problems (1)–(4). In particular, the interaction
of the incident field ψ inc = Rg ψn with the scatterer through the boundary condition (4)
induces a scattered field ψs satisfying Equations (1) and (2). Our T-matrix algorithm
requires computation of the corresponding far field given by Equation (3), which we
denote by ψ∞

n with the suffix indicating the association with the regular wavefunction
Rg ψn. Then the TMATROM T-matrix entries are given by Ganesh and Hawkins [2009]:

Tmn = 1
4

√
k
π

i|m|(1 + i)
∫

∂ B
ψ∞

n em ds, (23)

where em(θ ) = eimθ . In practice, the boundary integrals over ∂ B in Equation (23) are
computed numerically using the rectangle rule (which exhibits high-order convergence
for periodic domains).

The far fields ψ∞
n induced by each regular wavefunction Rg ψn are computed nu-

merically and any appropriate numerical solver can be used for this. Typically the
appropriate numerical solver depends on the shape and material properties of the
scatterer D. There are no restrictions on the shape of the scatterer provided an appro-
priate numerical solver is available. It is convenient to assume that the L2 error in the
numerically computed values of ψ∞

n is bounded by ε. Then the following convergence
estimate follows from Ganesh et al. [2012, Theorem 3.9].

THEOREM 4.1. For scattering of a plane wave by a scatterer of radius R,

‖ψ∞ − ψ∞
N ‖2

L2(∂ B) ≤ CN2
(

Rke
2N

)2N

+ C ′ε2, (24)

provided the shape-independent T-matrix matrix truncation parameter N > Rk/2 + 1,
where ψ∞

N is the far field computed using the truncated T-matrix with entries (23). Here
e = exp(1) and C, C ′ are constants that are independent of N but may depend on D, R,
and k.

The proviso that N > Rk/2 + 1 in Theorem 4.1 suggests that the truncation
parameter N must grow with the radius R of the scatterer and with the wavenumber
k. A consequence of Theorem 4.1 is that high-order convergence of the T-matrix method
is preserved provided the far field induced by each regular wavefunction Rg ψn is eval-
uated with high-order accuracy by the forward solver. Such high-order forward solvers
are well known in the two-dimensional case for smooth scatterers (see Colton and
Kress [2012] and Barnett and Betcke [2010]) and for Lipschitz scatterers (see Barnett
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Fig. 1. Visualisations of our sound soft and sound hard test scatterers. The aspect ratio is in parentheses.

and Betcke [2010]) and these are supported in TMATROM. High-order forward solvers
for the three-dimensional case are also available (see Wienert [1990], Bruno and
Kunyansky [2001], and Ganesh and Graham [2004] for acoustics and Ganesh and
Hawkins [2008b] for electromagnetism).

5. NUMERICAL EXPERIMENTS

We demonstrate the numerical stability of our TMATROM package by computing the
T-matrix of several kinds of scatterer found in the literature and visualized in Figure 1.
In the figure, and in subsequent tables, we indicate the aspect ratio of the scatterer
(the width divided by the height or its reciprocal, as appropriate) in parentheses. In
our experiments, we choose the wavenumber so that the scatterers have diameters
between one wavelength and 100 wavelengths. We include results for both the sound
soft and sound hard cases. Except where stated otherwise, in our experiments the
T-matrix truncation parameter is given by Equation (12) incremented by 5.

All of our experiments are performed in Matlab using double precision floating point
arithmetic. It is well known that the accuracy of the NFM can be improved using ex-
tended precision arithmetic [Havemann and Baran 2004; Khlebtsov 2010; Mishchenko
et al. 1996; Mishchenko and Travis 1994]. Extended precision arithmetic cannot be
achieved in Matlab without using extensions and we do not use extended precision in
any of our experiments. We show below that slower extended precision based compu-
tation is not required to achieve accurate solutions using TMATROM.

Our test scatterers have been chosen to demonstrate the effects of changing as-
pect ratio (ellipses and capped cylinders [Sarkissian et al. 1993]), nonconvex shape
(kite Colton and Kress [2012, Section 3.5]), and nonsmooth shape (hexagon). The
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hexagon is particularly interesting because of its importance in atmospheric optics.
All of the test scatterers are provided in the TMATROM installation (see Ganesh and
Hawkins [2016, Section 9]).

TMATROM allows the user to choose from various forward scattering solvers (or to
provide their own). For the ellipses, capped cylinders, and kite we use the Nyström
method [Colton and Kress 2012, Section 3.5] with 2Ns + 2 quadrature points to solve
the combined single- and double-layer integral equation [Colton and Kress 2012, Equa-
tion (3.27)] in the sound soft case, and a similar combined layer equation [Kirsch and
Monk 1994, Equation (3.5)] in the sound hard case.

For the ellipses and the kite, the Nyström method converges exponentially with re-
spect to the Nyström parameter Ns because of the smooth boundary parametrisation.
For the capped cylinders, the Nyström method converges only quadratically with re-
spect to the Nyström parameter Ns due to the discontinuity in the derivative of the
surface normal at the interfaces between the cylinder body and the circular caps.

For the hexagon we use the MPSPACK package [Barnett and Betcke 2014], which
implements the method of fundamental solutions augmented with corner bases in a
nonpolynomial finite element method [Barnett and Betcke 2010]. This method exhibits
high-order convergence with respect to the number of corner bases and MFS points.
The TMATROM package installation includes an interface to MPSPACK.

We compare the quality of the T-matrix computed using TMATROM with the T-
matrices computed using the NFM, PMM, and GPMM using the normalized symmetry
error (11). Motivated by Equation (24), we also obtain a direct measure of the error in
the T-matrix using the relative far field error

‖ψ∞ − ψ∞
N ‖L2(∂ B)

‖ψ∞‖L2(∂ B)
, (25)

where ψ∞ is the far field induced by the incident plane wave ψ inc(x, y) = eiky and ψ∞
N is

the approximation to the far field computed using the truncated T-matrix. In practice,
the L2(∂ B) norms in Equation (25) are evaluated using the rectangle rule with 1,000
points and the reference far field ψ∞ is computed numerically. We restrict use of the
relative far field error (25) to the ellipse and capped cylinder geometries, for which
we are able to compute the reference far field ψ∞ accurately using a different solver
than the one used in TMATROM to compute the T-matrix. In particular, for the ellipse
and capped cylinder we compute the reference far field (directly, i.e., without using
the T-matrix) using the MPSPACK package [Barnett and Betcke 2014], and hence this
solver is completely independent of the Nyström method that we use to compute the
T-matrix in TMATROM.

Boundary integrals in the NFM are computed using either M equally spaced points
(ellipses and kite) or a composite Gauss-Legendre rule with M points (capped cylinder
and hexagon). The number of intervals in the composite rule is fixed and the intervals
are chosen so that points where the boundary is not smooth correspond to interval
endpoints. In all cases, the number of quadrature points M in the NFM is proportional
to the T-matrix truncation parameter. The PMM and GPMM are implemented with M
equally spaced points with M = 2N + 1 in the PMM and M = 4N + 2 in the GPMM
where N is the T-matrix truncation parameter.

Formulations of the NFM with enhanced numerical stability have been developed for
the elliptical and capped cylinder scatterers [Waterman 2007, 2009; Sarkissian et al.
1993; Somerville et al. 2013]. We do not use these formulations here because they do
not demonstrate typical behavior of the NFM for wider classes of scatterers, for which
they are not applicable.
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Table I. Normalized Symmetry Error (11) in the T-matrix
Computed Using the Null Field Method for Sound Soft Ellipses

Size ellipse(1.1) ellipse(1.5) ellipse(3.0) ellipse(6.0)
1.0 1.88e-15 1.03e-15 5.59e-02 6.14e+01
2.0 1.41e-15 1.29e-14 8.07e-01 1.96e+03
4.0 2.35e-15 3.95e-14 3.77e+01 1.50e+04
8.0 2.18e-15 1.30e-11 1.86e+02 1.12e+03
16.0 6.33e-14 7.41e-08 7.29e+04 5.02e+02

Table II. Normalized Symmetry Error (11) in the T-matrix
Computed Using the Point Matching Method for Sound

Soft Ellipses

Size ellipse(1.1) ellipse(1.5) ellipse(3.0) ellipse(6.0)
1.0 5.88e-09 6.68e-01 3.28e+01 1.30e+02
2.0 8.01e-09 2.00e+01 1.89e+03 9.41e+03
4.0 1.74e-08 5.48e+01 7.09e+06 3.47e+07
8.0 2.86e-07 1.48e+04 3.23e+11 5.59e+12
16.0 3.75e-05 5.23e+08 1.05e+15 6.78e+16

Table III. Normalized Symmetry Error (11) in the T-matrix
Computed Using the Generalized Point Matching Method

for Sound Soft Ellipses

Size ellipse(1.1) ellipse(1.5) ellipse(3.0) ellipse(6.0)
1.0 4.33e-11 4.31e-05 1.00e+00 1.00e+00
2.0 6.59e-11 1.20e-04 1.00e+00 1.00e+00
4.0 7.50e-11 5.14e-04 1.00e+00 1.00e+00
8.0 4.94e-10 2.85e-03 1.00e+00 1.00e+00
16.0 4.99e-09 4.10e-01 1.00e+00 1.00e+00

Effect of Aspect Ratio and Acoustic Size. We begin with numerical results for sound
soft ellipses with aspect ratios between 1.1 and 6.0 to demonstrate the numerical
instability that occurs in the NFM, PMM, and GPMM methods as the aspect ratio
increases. Tables I–III show that in all three cases the normalized symmetry error (11)
increases with aspect ratio and acoustic size. For large aspect ratios the normalized
error in the GPMM is close to 1 because the computed T-matrix is close to zero. The
numerical instability in the NFM is recognized in the literature to be due to cancellation
error in the quadrature to compute the entries of Q and the large condition number
of Q. The estimated error in Q is given in Table VII and the condition number of Q
is given in Table VI. The corresponding error in Rg Q is less than 1e-14 in all cases.
Similar ill conditioning is seen for the PMM and GPMM.

The error in the entries of Q is estimated by computing

‖Q− Q4M‖, (26)

where Q4M denotes the matrix computed using four times as many quadrature points.
The large errors observed in Table VII are associated with unbounded growth of the
Hankel function H(1)

n (kr) in the radiating wavefunction (6) as n gets large and/or as r
gets small. For example, for the scatterer ellipse(6.0) with acoustic size 16 wavelengths
we have kr = 16π/6 at the minor radius of the ellipse and |H(1)

N (kr)| = 5.6e+56 for
truncation parameter N = 72.

In contrast to the results for the NFM, PMM, and GPMM in Tables I–III, Table IV
shows that the normalized symmetry error for TMATROM remains small for all aspect
ratios and acoustic sizes tested. In particular, for elongated ellipses (aspect ratios
3.0 and 6.0) the only method that can achieve symmetry error smaller than 1% is
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Table IV. Normalized Symmetry Error (11) in the T-matrix
Computed Using TMATROM for Sound Soft Ellipses

Size ellipse(1.1) ellipse(1.5) ellipse(3.0) ellipse(6.0)
1.0 3.07e-14 6.50e-14 2.64e-09 3.54e-09
2.0 1.28e-10 6.04e-11 2.98e-11 4.82e-09
4.0 1.93e-11 8.86e-12 4.99e-11 7.73e-10
8.0 4.05e-10 1.60e-10 7.00e-10 7.42e-10
16.0 2.96e-09 1.00e-09 6.18e-09 6.90e-09

Table V. Relative Far-Field Error (25) in the T-matrix
Computed Using TMATROM for Sound Soft Ellipses

Size ellipse(1.1) ellipse(1.5) ellipse(3.0) ellipse(6.0)
1.0 4.44e-14 1.53e-12 1.59e-09 1.82e-09
2.0 8.17e-11 1.29e-11 7.00e-11 2.10e-09
4.0 2.38e-12 2.18e-11 1.84e-10 3.41e-10
8.0 5.94e-12 1.97e-10 1.39e-09 1.72e-09
16.0 1.72e-11 1.46e-09 8.48e-09 1.03e-08

Table VI. Condition Number of Q in the Null Field Method
for Sound Soft Ellipses

Size ellipse(1.1) ellipse(1.5) ellipse(3.0) ellipse(6.0)
1.0 3.82e+01 7.99e+00 5.89e+17 9.25e+30
2.0 4.58e+00 6.83e+01 3.06e+18 1.10e+37
4.0 8.60e+00 2.62e+01 4.13e+20 1.75e+48
8.0 9.42e+00 7.73e+01 1.02e+23 3.29e+59
16.0 3.72e+02 5.38e+03 5.02e+39 7.99e+81

TMATROM. The high accuracy attained by TMATROM is preserved for all acoustic
sizes tested, even for the highest aspect ratio ellipse. Table V shows that the relative
far-field error for TMATROM is consistent with the normalized symmetry error. Similar
numerical experiments for sound hard ellipses yield qualitatively identical results to
those in Tables I–VII.

Next, we give results for sound soft capped cylinders with the same aspect ratios
used for the ellipse results above. The results in Tables VIII–X demonstrate similar
numerical instability in the NFM, PMM, and GPMM as we observed for the ellipses. In
contrast, Table XI shows that the normalized error using TMATROM remains small for
all aspect ratios and acoustic sizes tested. (We refer to the comment below to explain
the order of the error in the capped cylinder experiments.) TMATROM is the only
method that does not fail for elongated capped cylinders (aspect ratios 3.0 and 6.0). In
the case of the capped cylinder with aspect ratio 1.5, the NFM, PMM, and GPMM are
stable only at small acoustic sizes. In contrast, stability of TMATROM is not conditional
on acoustic size in the cases tested. Table XII shows that the relative far-field error
for TMATROM is consistent with the normalised symmetry error. Similar numerical
experiments for sound hard capped cylinders yield qualitatively identical results to
those in Tables VIII–XII.

Detailed Results. Next, we give detailed results comparing the NFM, PMM, GPMM,
and TMATROM methods for selected scatterers with high aspect ratio (ellipse and
capped cylinder), nonconvex shape (kite), or nonsmooth shape (hexagon). Tables XIII–
XVI show the normalized symmetry error for these sound soft scatterers with acoustic
sizes between 1 and 16 wavelengths. The GPMM method gives a few percent accu-
racy for the kite, while the NFM, PMM, and GPMM all give about 0.1% accuracy
for the hexagon. However, this accuracy is only attained for small acoustic size and
the accuracy is much less at larger acoustic sizes. TMATROM exhibits significantly
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Table VII. Estimated Quadrature Error in Q in the Null Field
Method for Sound Soft Ellipses

Size ellipse(1.1) ellipse(1.5) ellipse(3.0) ellipse(6.0)
1.0 9.95e-08 1.38e-05 2.37e+08 3.90e+17
2.0 2.58e-08 1.34e-05 6.81e+08 5.90e+20
4.0 1.46e-07 3.50e-04 8.64e+09 5.99e+26
8.0 7.62e-08 9.36e-03 4.00e+11 5.88e+36
16.0 1.80e-07 1.26e+01 2.68e+21 1.07e+55

Table VIII. Normalized Symmetry Error (11) in the T-matrix
Computed Using NFM for Sound Soft Capped Cylinders

Size cylinder(1.1) cylinder(1.5) cylinder(3.0) cylinder(6.0)
1.0 2.06e-04 3.40e-05 8.18e+00 2.20e+02
2.0 1.05e-05 8.98e-05 3.67e+02 1.97e+03
4.0 7.16e-06 1.35e-03 4.53e+03 9.54e+03
8.0 8.07e-05 1.19e-01 4.69e+05 2.12e+04

16.0 5.87e-06 8.33e+01 8.66e+07 1.61e+05

Table IX. Normalized Symmetry Error (11) in the T-matrix
Computed Using PMM for Sound Soft Capped Cylinders

Size cylinder(1.1) cylinder(1.5) cylinder(3.0) cylinder(6.0)
1.0 5.77e-07 6.79e-04 2.74e+01 7.19e+01
2.0 4.82e-07 8.18e-03 8.13e+02 3.12e+03
4.0 5.17e-07 2.64e+00 2.18e+05 2.31e+06
8.0 7.19e-07 1.13e+03 4.57e+09 3.93e+11

16.0 2.02e-06 3.90e+05 3.39e+15 2.92e+16

Table X. Normalized Symmetry Error (11) in the T-matrix
Computed Using GPMM for Sound Soft Capped Cylinders

Size cylinder(1.1) cylinder(1.5) cylinder(3.0) cylinder(6.0)
1.0 4.39e-07 6.28e-07 1.00e+00 1.00e+00
2.0 2.56e-07 9.57e-07 1.00e+00 1.00e+00
4.0 2.72e-07 4.60e-06 1.00e+00 1.00e+00
8.0 3.77e-07 6.70e-05 1.00e+00 1.00e+00

16.0 3.65e-07 1.00e+00 1.00e+00 1.00e+00

Table XI. Normalized Symmetry Error (11) in the T-matrix
Computed Using TMATROM for Sound Soft Capped Cylinders

Size cylinder(1.1) cylinder(1.5) cylinder(3.0) cylinder(6.0)
1.0 3.04e-05 2.62e-05 2.26e-05 2.41e-05
2.0 1.69e-05 2.26e-05 2.46e-05 2.26e-05
4.0 1.97e-05 2.56e-05 2.37e-05 2.43e-05
8.0 2.21e-05 1.99e-05 2.44e-05 2.46e-05

16.0 1.73e-05 2.15e-05 2.43e-05 2.42e-05

Table XII. Relative Far-Field Error (25) in the T-matrix Computed
Using TMATROM for Sound Soft Capped Cylinders

Size cylinder(1.1) cylinder(1.5) cylinder(3.0) cylinder(6.0)
1.0 2.54e-05 1.12e-05 6.25e-06 1.79e-05
2.0 1.22e-05 7.60e-06 1.08e-05 6.78e-06
4.0 2.02e-05 8.16e-06 7.22e-06 1.17e-05
8.0 2.13e-05 1.20e-05 5.18e-06 4.79e-06

16.0 1.75e-05 1.69e-05 8.18e-06 5.89e-06
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Table XIII. Comparison of Normalized Symmetry Error (11) for All Methods for Sound Soft ellipse(6.0)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 3.54e-09 6.14e+01 1.62e+01 1.93e-06 1.30e+02 1.00e+00
2.0 4.82e-09 1.96e+03 4.50e+01 1.32e-02 9.41e+03 1.00e+00
4.0 7.73e-10 1.50e+04 8.67e+03 8.27e+02 3.47e+07 1.00e+00
8.0 7.42e-10 1.12e+03 3.64e+05 2.00e+04 5.59e+12 1.00e+00
16.0 6.90e-09 5.02e+02 6.23e+03 2.45e+03 6.78e+16 1.00e+00

Table XIV. Comparison of Normalized Symmetry Error (11) for All Methods for Sound Soft cylinder(6.0)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 2.41e-05 2.20e+02 1.79e+02 1.90e+01 7.19e+01 1.00e+00
2.0 2.26e-05 1.97e+03 3.91e+03 5.20e+02 3.12e+03 1.00e+00
4.0 2.43e-05 9.54e+03 6.13e+03 3.20e+03 2.31e+06 1.00e+00
8.0 2.46e-05 2.12e+04 3.52e+04 4.79e+03 3.93e+11 1.00e+00
16.0 2.42e-05 1.61e+05 6.29e+04 3.07e+05 2.92e+16 1.00e+00

Table XV. Comparison of Normalized Symmetry Error (11) for All Methods for Sound Soft kite(1.2)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 3.89e-10 4.84e-01 4.84e-01 4.84e-01 8.63e+03 6.22e-02
2.0 2.87e-10 3.00e+01 3.00e+01 3.00e+01 4.12e+06 1.04e-01
4.0 6.26e-11 1.44e+01 1.44e+01 1.44e+01 9.88e+09 1.00e+00
8.0 2.39e-09 5.17e+01 5.17e+01 5.17e+01 7.04e+13 1.00e+00
16.0 5.49e-09 1.37e+03 1.09e+03 1.23e+03 5.30e+15 1.00e+00

Table XVI. Comparison of Normalized Symmetry Error (11) for All Methods for Sound Soft hexagon(1.15)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 4.21e-09 2.94e-03 2.94e-03 2.94e-03 8.94e-04 3.12e-03
2.0 1.60e-09 8.74e-04 8.74e-04 8.74e-04 1.44e-03 5.86e-03
4.0 2.96e-09 9.56e+00 9.56e+00 9.56e+00 7.45e-03 9.62e-03
8.0 8.72e-09 1.04e+01 1.04e+01 1.04e+01 6.41e-02 2.00e-02
16.0 9.70e-09 8.03e+00 8.03e+00 8.03e+00 2.25e+01 3.74e-02

Table XVII. Comparison of Relative Far-Field Error (25) for All Methods for Sound Soft ellipse(6.0)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 1.82e-09 1.93e+01 5.09e+00 3.41e-06 3.56e+01 1.00e+00
2.0 2.10e-09 4.96e+02 6.70e+00 2.33e-02 9.57e+02 1.00e+00
4.0 3.41e-10 1.20e+03 1.24e+03 4.57e+01 1.14e+06 1.00e+00
8.0 1.72e-09 1.74e+02 4.78e+04 1.08e+03 2.09e+10 1.00e+00
16.0 1.03e-08 5.55e+01 8.46e+02 1.45e+02 1.58e+14 1.00e+00

Table XVIII. Comparison of Relative Far-Field Error (25) for All Methods for Sound Soft cylinder(6.0)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 1.79e-05 4.42e+01 4.27e+01 3.61e+00 4.58e+01 1.00e+00
2.0 6.78e-06 7.00e+01 5.50e+01 3.05e+01 1.81e+03 1.00e+00
4.0 1.17e-05 4.21e+02 2.94e+02 3.55e+01 4.69e+05 1.00e+00
8.0 4.79e-06 8.65e+02 1.86e+03 5.39e+02 1.68e+11 1.00e+00
16.0 5.89e-06 1.26e+04 8.87e+03 1.98e+04 1.72e+16 1.00e+00
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Table XIX. Comparison of Normalized Symmetry Error (11) for All Methods for Sound Hard ellipse(6.0)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 3.62e-09 1.08e+01 2.43e+00 7.68e-05 2.26e+01 1.00e+00
2.0 4.99e-09 3.69e+02 5.25e+01 1.88e-01 3.12e+03 1.00e+00
4.0 2.03e-09 4.75e+03 4.49e+02 7.22e+02 1.27e+07 1.00e+00
8.0 7.27e-10 2.85e+03 2.05e+05 6.82e+03 7.17e+12 1.00e+00
16.0 6.40e-09 8.71e+02 7.06e+03 3.99e+03 6.51e+15 1.00e+00

Table XX. Comparison of Normalized Symmetry Error (11) for All Methods for Sound Hard cylinder(6.0)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 2.78e-05 3.03e+01 1.20e+01 1.36e+01 2.51e+01 1.00e+00
2.0 2.90e-05 4.75e+03 2.38e+03 1.23e+02 9.98e+02 1.00e+00
4.0 6.38e-05 2.09e+04 8.05e+03 1.15e+04 2.32e+06 1.00e+00
8.0 9.87e-05 5.62e+04 4.29e+04 5.10e+03 1.79e+11 1.00e+00
16.0 8.03e-05 6.42e+04 2.37e+05 2.08e+05 4.76e+16 1.00e+00

Table XXI. Comparison of Normalized Symmetry Error (11) for All Methods for Sound Hard kite(1.2)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 7.15e-11 1.52e-01 1.52e-01 1.52e-01 2.12e+03 2.02e-01
2.0 1.16e-10 1.05e+01 1.05e+01 1.05e+01 7.35e+05 1.00e+00
4.0 7.40e-11 1.11e+01 1.11e+01 1.11e+01 6.34e+09 1.00e+00
8.0 7.21e-09 1.14e+02 1.14e+02 1.14e+02 1.22e+14 1.00e+00
16.0 2.65e-08 1.31e+03 8.25e+02 6.37e+02 7.12e+15 1.00e+00

higher accuracy than the NFM, PMM, and GPMM methods in all cases, even for larger
acoustic sizes.

We have observed that in some cases the results for the NFM can be improved by
increasing the quadrature degree (see also the discussion above and Table VII). Thus,
for the NFM we include results obtained with the number of quadrature points doubled
and quadrupled. The results in Tables XIII–XVI show that even quadruple quadrature
degree is not sufficient to obtain robust stability for large aspect ratio or large acoustic
size.

Tables XVII and XVIII show that in the case of the ellipse and the capped cylinder
the far-field error exhibits similar features to those discussed above in the normalized
symmetry error. Similar numerical experiments for sound hard scatterers are given in
Tables XIX–XXIV and yield qualitatively similar results.

The error obtained with TMATROM is governed by the accuracy of the forward
scattering solver. In most of our TMATROM results we chose the parameters for the
forward scattering solver so that the normalized error in the sound soft case was less
than 1e-08. For the capped cylinder we allow error larger than 1e-08 because of the
slow convergence of the Nyström method due to the discontinuity in the derivative of
the surface normal of this scatterer. The slow convergence in this case allows us to
demonstrate how the error in the forward solver carries into the normalized error in
the T-matrix. Table XXV shows the quadratic convergence of the normalized error in
the T-matrix with respect to the Nyström parameter Ns for the sound soft case.

Performance. Next, we demonstrate the efficiency of TMATROM by comparing CPU
times between the different methods. All CPU times were obtained using Matlab on
a laptop computer with a quad core 2.6GHz CPU. The efficiency of TMATROM is
governed by the efficiency of the forward scattering solver. In Table XXVI, we show
the CPU time for the sound soft ellipse with aspect ratio 6.0. For this smooth scatterer
the Nyström solver used by TMATROM is very efficient and the CPU time for the
TMATROM method is very low. For the ellipse with acoustic size 16 wavelengths the
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Table XXII. Comparison of Normalized Symmetry Error (11) for All Methods for Sound Hard hexagon(1.15)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 3.76e-09 5.08e-04 5.09e-04 5.09e-04 1.50e-01 1.92e-01
2.0 3.37e-09 1.37e-03 1.37e-03 1.37e-03 1.23e-01 1.66e-01
4.0 2.23e-09 2.32e-03 2.32e-03 2.32e-03 3.24e-01 2.28e-01
8.0 5.11e-09 4.29e-03 4.29e-03 4.29e-03 1.33e+01 2.75e-01
16.0 1.50e-08 2.08e-02 2.08e-02 2.08e-02 1.07e+01 2.76e-01

Table XXIII. Comparison of Relative Far-Field Error (25) for All Methods for Sound Hard ellipse(6.0)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 4.05e-09 4.85e+00 1.09e+00 7.40e-05 1.59e+01 1.00e+00
2.0 4.03e-09 1.15e+02 1.26e+01 1.65e-01 8.40e+02 1.00e+00
4.0 2.02e-09 2.56e+02 9.15e+01 2.21e+02 8.46e+05 1.00e+00
8.0 1.83e-09 5.36e+01 2.60e+04 5.60e+02 6.07e+10 1.00e+00
16.0 9.64e-09 3.49e+01 3.22e+02 2.48e+02 4.15e+13 1.00e+00

Table XXIV. Comparison of Relative Far-Field Error (25) for All Methods for Sound Hard cylinder(6.0)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 1.17e-04 1.10e+01 8.56e+00 7.82e+00 4.29e+01 1.00e+00
2.0 9.04e-05 4.49e+01 3.93e+01 1.40e+01 5.81e+02 1.00e+00
4.0 1.03e-04 4.42e+02 4.97e+02 2.34e+02 5.72e+05 1.00e+00
8.0 1.14e-04 3.69e+03 4.83e+03 4.61e+02 5.69e+10 1.00e+00
16.0 9.50e-05 1.57e+04 2.08e+04 1.68e+04 9.09e+15 1.00e+00

Table XXV. Normalized Symmetry Error (11) in the T-matrix
Computed Using TMATROM with the Nyström

Solver with 2Ns + 2 Points for Sound Soft cylinder(6.0)

Normalized symmetry error
Size N0 Ns = ceil(N0/2) Ns = N0 Ns = 2N0
1.0 145 3.94e-04 9.43e-05 2.41e-05
2.0 175 3.57e-04 9.04e-05 2.26e-05
4.0 205 3.93e-04 9.86e-05 2.43e-05
8.0 210 4.07e-04 9.94e-05 2.46e-05
16.0 290 3.88e-04 9.72e-05 2.42e-05

Table XXVI. Comparison of CPU Time (in Seconds) for All Methods for Sound Soft ellipse(6.0)

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 0.03 0.87 0.81 0.97 0.03 0.04
2.0 0.04 1.65 1.53 1.91 0.03 0.03
4.0 0.05 3.08 3.83 5.21 0.05 0.06
8.0 0.11 8.08 10.80 16.36 0.08 0.10
16.0 0.25 27.33 40.43 66.15 0.16 0.15

Table XXVII. Comparison of CPU Time (in Seconds) for All Methods for Sound Hard hexagon(1.15).

Size TMATROM NFM (M points) NFM (2M points) NFM (4M points) PMM GPMM
1.0 1.10 1.73 1.37 1.85 0.03 0.04
2.0 1.57 3.24 2.49 3.48 0.04 0.05
4.0 2.32 5.35 7.45 11.88 0.07 0.11
8.0 3.83 14.67 22.11 38.11 0.14 0.22
16.0 20.61 53.54 89.50 158.41 0.32 0.25
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Fig. 2. L2(∂ B) error in the far field plotted against T-matrix truncation parameter N for ellipses with acoustic
size 16 wavelengths. The far field is computed using the T-matrix for the incident plane wave ψ inc(x, y) =
eiky. The T-matrix is computed using TMATROM. The dashed line shows the theoretical convergence rate
predicted by Equation (24).

CPU time to set up the Nyström matrix was 0.09 seconds. In Table XXVII we show
the CPU time for the sound hard hexagon. For this polygonal scatterer the MPSPACK
solver used by TMATROM involves several artificial domains and the CPU time is
higher. However, in both cases the CPU time for TMATROM is much lower than the
CPU time for the NFM. (TMATROM is shown to be the most accurate method for these
experiments in Tables XIII and Table XXII).

In Figure 2, we demonstrate that the convergence rate of the far field computed using
the truncated T-matrix is in agreement with the bound (24) by plotting the L2(∂ B) error
of the far field against the truncation parameter N for ellipses having acoustic size 16
wavelengths. The truncated T-matrix used to compute the far field is computed using
TMATROM. The reference far field is computed using MPSPACK as described above,
and hence is completely independent from the T-matrix calculation. The far field is
induced by the incident plane wave ψ inc(x, y) = eiky. Similar figures are obtained for
other acoustic sizes.

Finally, we demonstrate the stability of TMATROM for large acoustic sizes. In Ta-
ble XXVIII we tabulate the normalized symmetry error (11) for T-matrices computed
using TMATROM for sound soft ellipses with aspect ratios between 1.1 and 6.0 for
acoustic sizes between 20 and 100 wavelengths. We highlight that TMATROM achieved
normalized symmetry error smaller than 1e-08 in all cases, even for the ellipse with
aspect ratio 6.0 and acoustic size 100 wavelengths (with kR = 314.2). None of the other
methods tested could match this accuracy for this geometry even with acoustic size 1
wavelength.
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Table XXVIII. Normalized Symmetry Error (11) in the T-matrix
Computed Using TMATROM for Sound Soft Ellipses

Size ellipse(1.1) ellipse(1.5) ellipse(3.0) ellipse(6.0)
20 4.41e-09 1.44e-09 3.93e-10 1.59e-10
40 3.02e-10 3.63e-09 8.85E-10 1.02e-09
60 8.44e-10 4.94e-09 2.50e-09 2.81e-09
80 1.39e-09 5.82e-09 5.71e-09 6.32e-09

100 2.05e-09 6.29e-09 8.48e-09 9.62e-09
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