Acoustic multiple scattering

Artur L. Gower ${ }^{a}$,
${ }^{a}$ School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL,UK

January 7, 2021

Abstract

Here we show and deduce the T-matrix and multiple scattering for acoustics. Before reading this document, it may be helpful to read the general multiple scattering formulation shown in multiplescattering.pdf.

Keywords: Multiple scattering, T-matrix, Scattering matrix

1 2D acoustics

Much of the notation is define in multiplescattering.pdf. For the 2D acoustics some good references are [2, 1].

For 2D acoustics we have that

$$
\begin{align*}
\mathrm{u}_{n}(k \boldsymbol{r}) & =J_{n}(k r) \mathrm{e}^{\mathrm{i} n \theta} \tag{1}\\
\mathrm{v}_{n}(k \boldsymbol{r}) & =H_{n}(k r) \mathrm{e}^{\mathrm{i} n \theta} . \tag{2}
\end{align*}
$$

When truncating up to some order N we would sum over $n=-N,-N+$ $1, \ldots, N-1, N$.

1.1 Circular cylinder

Let ρ and c be the background density and wavespeed, and let ρ_{j}, c_{j} and radius a_{j} be the mass density, wavespeed, and radius for a circular scatterer with density.

Let $u=u_{\text {inc }}+u_{\text {sc }}$ be the total field outside the particle, and $v_{\text {in }}$ the total field inside the particle, then from the acoustic boundary conditions:

$$
u=v_{\text {in }}, \quad \frac{1}{\rho} \frac{\partial u}{\partial r}=\frac{1}{\rho_{j}} \frac{\partial v_{\mathrm{in}}}{\partial r}, \quad \text { for } r=a_{j}
$$

we can deduce the T-matrix

$$
\begin{equation*}
T_{n m}=-\delta_{n m} \frac{\gamma_{j} J_{m}^{\prime}\left(k a_{j}\right) J_{m}\left(k_{j} a_{j}\right)-J_{m}\left(k a_{j}\right) J_{m}^{\prime}\left(k_{j} a_{j}\right)}{\gamma_{j} H_{m}^{\prime}\left(k a_{j}\right) J_{m}\left(k_{j} a_{j}\right)-H_{m}\left(k a_{j}\right) J_{m}^{\prime}\left(k_{j} a_{j}\right)}, \tag{3}
\end{equation*}
$$

where $\gamma_{j}=\left(\rho_{j} c_{j}\right) /(\rho c)$ and $k_{j}=\omega / c_{j}$.
We can also calculate the coefficients b_{n} from

$$
\begin{equation*}
b_{n}=\frac{f_{n}}{T_{n n} J_{n}\left(k_{j} a_{j}\right)}\left[T_{n n} H_{n}\left(k a_{j}\right)+J_{n}\left(k a_{j}\right)\right] \tag{4}
\end{equation*}
$$

1.2 Circular cylindrical capsule

$$
\begin{align*}
& \psi^{0}=\sum_{n=-\infty}^{\infty} g_{n}^{0} J_{n}\left(k_{0} r\right) \mathrm{e}^{\mathrm{i} n \theta}, \tag{5}\\
& \psi^{1}=\sum_{n=-\infty}^{\infty}\left[g_{n}^{1} J_{n}\left(k_{1} r\right)+f_{n}^{1} H_{n}\left(k_{1} r\right)\right] \mathrm{e}^{\mathrm{i} n \theta} . \tag{6}
\end{align*}
$$

Applying the boundary conditions,

$$
\begin{align*}
& \psi^{0}=\psi^{1} \quad \text { and } \quad \frac{1}{\rho_{0}} \frac{\partial \psi^{0}}{\partial r}=\frac{1}{\rho_{1}} \frac{\partial \psi^{1}}{\partial r}, \quad \text { on } r=a_{0}, \tag{7}\\
& \psi^{1}=\psi^{\mathrm{s}}+\psi^{\mathrm{inc}} \quad \text { and } \quad \frac{1}{\rho_{1}} \frac{\partial \psi^{1}}{\partial r}=\frac{1}{\rho} \frac{\partial\left(\psi^{\mathrm{s}}+\psi^{\mathrm{inc}}\right)}{\partial r}, \quad \text { on } r=a_{1} . \tag{8}
\end{align*}
$$

Solving these boundary conditions (see capsule-boundary-conditions.nb) leads

$$
\begin{align*}
T_{n n}= & -\frac{J_{n}\left(k a_{1}\right)}{H_{n}\left(k a_{1}\right)}-\frac{Y_{1}^{n}\left(k a_{1}, k a_{1}\right)}{H_{n}\left(k a_{1}\right)}\left[Y^{n}\left(k_{1} a_{1}, k_{1} a_{0}\right) J_{n}^{\prime}\left(k_{0} a_{0}\right)-q_{0} J_{n}\left(k_{0} a_{0}\right) Y_{\prime}^{n}\left(k_{1} a_{1}, k_{1} a_{0}\right)\right] \\
& \times\left[J_{n}^{\prime}\left(k_{0} a_{0}\right)\left(q H_{n}\left(k a_{1}\right) Y_{1}^{n}\left(k_{1} a_{0}, k_{1} a_{1}\right)+H_{n}^{\prime}\left(k a_{1}\right) Y^{n}\left(k_{1} a_{1}, k_{1} a_{0}\right)\right)\right. \\
+ & \left.q_{0} J_{n}\left(k_{0} a_{0}\right)\left(q H_{n}\left(k a_{1}\right) Y_{\prime \prime}^{n}\left(k_{1} a_{1}, k_{1} a_{0}\right)-H_{n}^{\prime}\left(k a_{1}\right) Y_{\prime}^{n}\left(k_{1} a_{1}, k_{1} a_{0}\right)\right)\right]^{-1} . \tag{9}
\end{align*}
$$

where $q=\rho c /\left(\rho_{1} c_{1}\right), q_{0}=\rho_{0} c_{0} /\left(\rho_{1} c_{1}\right)$, and

$$
\begin{align*}
& Y^{n}(x, y)=H_{n}(x) J_{n}(y)-H_{n}(y) J_{n}(x), \tag{10}\\
& Y_{,}^{n}(x, y)=H_{n}(x) J_{n}^{\prime}(y)-H_{n}^{\prime}(y) J_{n}(x), \tag{11}\\
& Y_{n}^{n}(x, y)=H_{n}^{\prime}(x) J_{n}^{\prime}(y)-H_{n}^{\prime}(y) J_{n}^{\prime}(x) . \tag{12}
\end{align*}
$$

1.3 Multiple scattering in 2D

Graf's addition theorem in two spatial dimensions:

$$
\begin{equation*}
H_{n}\left(k R_{\ell}\right) \mathrm{e}^{\mathrm{i} n \Theta_{\ell}}=\sum_{m=-\infty}^{\infty} H_{n-m}\left(k R_{\ell j}\right) \mathrm{e}^{\mathrm{i}(n-m) \Theta_{\ell j}} J_{m}\left(k R_{j}\right) \mathrm{e}^{\mathrm{i} m \Theta_{j}}, \text { for } R_{j}<R_{\ell j} \tag{13}
\end{equation*}
$$

where ($R_{\ell j}, \Theta_{\ell j}$) are the polar coordinates of $\boldsymbol{r}_{j}-\boldsymbol{r}_{\ell}$. The above is also valid if we swap H_{n} for J_{n}, and swap H_{n-m} for J_{n-m}.

Particle- j scatters a field

$$
\begin{equation*}
u_{j}=\sum_{n} f_{n}^{j} u_{n}\left(k \boldsymbol{r}-k \boldsymbol{r}_{j}\right), \quad \text { for } \quad\left|\boldsymbol{r}-\boldsymbol{r}_{j}\right|>a_{j}, \tag{14}
\end{equation*}
$$

where \boldsymbol{r}_{j} is the centre of particle j.
Let the incident wave, with coordinate system centred at \boldsymbol{r}_{j}, be

$$
\begin{equation*}
u_{\mathrm{inc}}=\sum_{n} g_{n}^{j} \mathrm{v}_{n}\left(k \boldsymbol{r}-k \boldsymbol{r}_{j}\right), \tag{15}
\end{equation*}
$$

then the wave exciting particle- j is

$$
\begin{equation*}
u_{j}^{E}=\sum_{n} F_{j}^{n} \mathrm{v}_{n}\left(k \boldsymbol{r}-k \boldsymbol{r}_{j}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{n}^{j}=g_{n}^{j}+\sum_{\ell \neq j} \sum_{p=-\infty}^{\infty} f_{p}^{\ell} H_{p-m}\left(k R_{\ell j}\right) \mathrm{e}^{\mathrm{i}(p-m) \Theta_{\ell j}} . \tag{17}
\end{equation*}
$$

Using the T-matrix of particle- j we reach $f_{n}^{j}=\sum_{m} T_{n m}^{j} F_{m}^{j}$, which leads to

$$
\begin{equation*}
f_{q}^{j}=\sum_{m} T_{q m}^{j} g_{m}^{j}+\sum_{\ell \neq j} \sum_{m, p=-\infty}^{\infty} f_{p}^{\ell} T_{q m}^{j} H_{p-m}\left(k R_{\ell j}\right) \mathrm{e}^{\mathrm{i}(p-m) \Theta_{\ell j}} . \tag{18}
\end{equation*}
$$

The above simplifies if we substitute $f_{q}^{j}=T_{q d}^{j} \alpha_{d}^{j}$, and then multiple across by $\left\{T_{q n}^{j}\right\}^{-1}$ and sum over q to arrive at

$$
\begin{equation*}
\alpha_{n}^{j}=g_{n}^{j}+\sum_{\ell \neq j} \sum_{m, p=-\infty}^{\infty} H_{p-n}\left(k R_{\ell j}\right) \mathrm{e}^{\mathrm{i}(p-n) \Theta_{\ell j}} T_{p m}^{\ell} \alpha_{m}^{\ell} . \tag{19}
\end{equation*}
$$

As a check, if we use (21], then we arrive at equation (2.11) in [3].
In the general formulation below we would have

$$
\mathcal{U}_{n^{\prime} n}\left(k R_{\ell j}\right)=H_{n^{\prime}-n}\left(k R_{\ell j}\right) \mathrm{e}^{\mathrm{i}\left(n^{\prime}-n\right) \Theta_{\ell j}} .
$$

Note that swapping ℓ for j would result in $\Theta_{\ell j}=\Theta_{j \ell}+\pi$.

23 D acoustics

For all the details on acoustics in three spatial dimensions see (4]. Here we all only provide:

$$
\left\{\begin{array}{l}
\mathrm{u}_{n}(k \boldsymbol{r})=\mathrm{h}_{\ell}^{(1)}(k r) \mathrm{Y}_{n}(\hat{\boldsymbol{r}}), \tag{20}\\
\mathrm{v}_{n}(k \boldsymbol{r})=\mathrm{j}_{\ell}(k r) \mathrm{Y}_{n}(\hat{\boldsymbol{r}}),
\end{array}\right.
$$

where $r=|\boldsymbol{r}|, n=\{\ell, m\}$, with summation being over $\ell=0,1,2,3 \ldots$ and $m=-\ell,-\ell+1, \ldots,-1,0,1, \ldots, \ell$, and the spherical Hankel and Bessel functions are denoted $\mathrm{h}_{\ell}^{(1)}(z)$ and $\mathrm{j}_{\ell}(z)$, respectively.

3 A sphere

Let ρ and c be the background density and wavespeed, then for a spherical particle with density ρ_{j}, soundspeed c_{j} and radius a_{j}, we have that

$$
\begin{equation*}
T_{n q}=-\delta_{n q} \frac{\gamma_{j} j_{q}^{\prime}\left(k a_{j}\right) j_{q}\left(k_{j} a_{j}\right)-j_{q}\left(k a_{j}\right) j_{q}^{\prime}\left(k_{j} a_{j}\right)}{\gamma_{j} h_{q}^{\prime}\left(k a_{j}\right) j_{q}\left(k_{j} a_{j}\right)-h_{q}\left(k a_{j}\right) j_{q}^{\prime}\left(k_{j} a_{j}\right)}, \tag{21}
\end{equation*}
$$

where $\gamma_{j}=\left(\rho_{j} c_{j}\right) /(\rho c)$ and $k_{j}=\omega / c_{j}$.

References

[1] M. Ganesh and S. C. Hawkins. "Algorithm 975: TMATROM-A TMatrix Reduced Order Model Software". In: ACM Trans. Math. Softw. 44 (July 2017), 9:1-9:18. (Visited on 03/23/2018).
[2] Mahadevan Ganesh and Stuart Collin Hawkins. "A far-field based Tmatrix method for two dimensional obstacle scattering". In: ANZIAM Journal 51 (May 12, 2010), pp. 215-230. (Visited on 03/23/2018).
[3] Artur L. Gower, Michael J. A. Smith, et al. "Reflection from a multispecies material and its transmitted effective wavenumber". In: arXiv:1712.05427 [physics] (Dec. 14, 2017). arXiv: 1712.05427. (Visited on 01/13/2018).
[4] Artur Lewis Gower and Gerhard Kristensson. "Effective Waves for Random Three-dimensional Particulate Materials" . In: arXiv preprint arXiv:2010.00934 (2020).

