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Abstract

Here we show and deduce the T-matrix and a general multiple
scattering formulation which can be adapted to acoustics, electromag-
netism, and elasticity. For details on each specific physical medium
see the other documents.
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1 Using a T-matrix

A T-matrix denotes how one single particle scatters waves [5, 4].
For convenience and generality we denote:

un(kr) = outgoing spherical waves,

vn(kr) = regular spherical waves,
(1)

where n denotes a multi index which depends on the dimension and if the
waves are scalar or vector fields. For example, for scalar waves in three spatial
dimensions we have

un(kr) = h
(1)
ℓ (kr)Yn(r̂),

vn(kr) = jℓ(kr)Yn(r̂),
(2)

where n is a multi index n = (ℓ,m), with ℓ = 0, 1, 2, 3 . . . and m = −ℓ,−ℓ+
1, . . . ,−1, 0, 1, . . . , ℓ. Here h

(1)
ℓ (z) and jℓ(z) are the spherical Hankel and

Bessel functions respectively, and Yn are the spherical harmonic basis func-
tions that are orthonormal with respect to the standard inner product on the
unit sphere [2].
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Any incident wave and scattered wave∗, centred at the same coordinate
axis, can be written as

uinc =
∑
n

gnvn(kr), (3)

usc =
∑
n

fnun(kr), (4)

for vector waves, such as elastic waves, fn and un(kr) are both vectors for
each n, with fnun(kr) being the inner product between these two vectors,
the same is true for gn and vn(kr).

The T-matrix is an infinite matrix such that

fn =
∑
n′

Tnn′gn′ , (5)

where for vector waves Tnn′ is a matrix multiplied with the vector gn′ . Such
a matrix T exists when scattering is a linear operation (elastic scattering).

1.1 Interal field

We can also estimate the field inside the particle by assuming that the field is
smooth and continuous. This approach is generally not true for vector wave
equations, but is exact for homogeneous spheres and cylinders, but not for a
Circular cylindrical capsule.

Assume the field inside the particle can be described by a regular spherical
series:

vin =
∑
n

bnvn(kor), (6)

where ko if the particles wavenumber. Now if we assume that the total field
is continuous everywhere so that uinc + usc = vin on the boundary of the
particle. If the field was smooth enough, we could analytically extend the
field vin to a spherical boundary, with radius a, which contains the particle.
Let’s take this as an assumption and equate uinc + usc = vin for r = a. Due
to orthogonality of the angular components of the basis functions this will
result in

gnvn(kr) + fnun(kr) = bnvn(kor), for |r| = a (7)

using the T-matrix we can then write gn = T−1
nmfm, which substituted above

leads to

bn =
1

vn(kor)
[vn(kr)T

−1
nmfm + un(kr)fn], for |r| = a. (8)

∗For the scattered wave we need only use outgoing spherical waves when measuring the
field outside of a sphere which completely encompasses the particle.
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2 General multiple scattering

For multiple scattering in higher dimensions and for vector wave equations
we use the notation given in [6].

For a point r, outside of the circumscribed spheres of all particles, we
can write the total field u(r) as a sum of the incident wave uinc(r) and all
scattered waves in the form [7, 8, 9]

u(r) = uinc(r) + usc(r), usc(r) =
N∑
i=1

∑
n

f i
nun(kr − kri), (9)

where we assumed |r − ri| > ai for i = 1, 2, . . . N , the f i
n are coefficients we

need to determine.
In general, we can write the multiple scattering system in the form:

αi
n = gin +

N∑
j=1
j ̸=i

∑
n′n′′

Un′′n(kri − krj)T
j
n′′n′α

j
n′ , (10)

for i = 1, 2, . . . , N , where f i
n =

∑
n′ T i

nn′αi
n′ and Unn′ is a translation matrix

[1, 3]. Let r′ = r + d, then the translation matrices for a translation d can
be defined by the property [1]

vn(kr
′) =

∑
n′

Vnn′(kd)vn′(kr), for all d

un(kr
′) =

∑
n′

Vnn′(kd)un′(kr), |r| > |d|

un(kr
′) =

∑
n′

Unn′(kd)vn′(kr), |r| < |d|

(11)

The coefficients gin′ depend on the form of the incident wave. If we can
use the representation (3) then we have that

gin =
∑
n′

Vn′n(ri)gn′ .

2.1 Turning equations into code

For easy implementation we need the functions:

ψinc 7→ gjn and particle 7→ T j
nn′ .
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For efficient implementation we rewrite (10) as a matrix equation. Let

(αj)n = αj
n, (gj)n = gjn, (12)

(T j)nn′ = T j
nn′ , (U jℓ)n′n = Un′n(krj − krℓ), (13)

Then ∑
ℓ

(δjℓ + (δjℓ − 1)UT
jℓT ℓ)αℓ = gj, (14)

where ·T is the transpose operation. The above then leads to a block matrix
equation:

I −UT
12T 2 · · · −UT

1(N−1)TN−1 −UT
1NTN

−UT
21T 1 I −UT

23T 3 · · · −UT
2NTN

...
...

−UT
N1T 1 · · · · · · −UT

N(N−1)TN−1 I



α1

α2

...
αN

 =

g1
...
gN


(15)

3 Periodic multiple scattering

Here we consider a unit cell filled with particles that is repeated periodically.
The particles can take any positions within the cell.

Let us start with the simplest case of identical particles centered at the
positions r1 ∈ P , where P is some countable set of vectors we define later.

The total field is again given by (9). However, if we assume the source is
periodic with

uinc(r) = uinc(r + r1), for every r1 ∈ P , (16)

then, due to symmetry, the scattering coefficients of every particles is the
same fn := f i

n, and as a result the total field is given by

u(r) = uinc(r) +
∑
n

fn
∑
i

un(kr − kri).

Taking r = v + rj, we can then write the wave arriving at (or exciting)
the particle at rj in the form

ujex(v) = uinc(v) +
∑
n

fn
∑
i ̸=j

un(kv + krj − kri),

where we used (16). Now we assume that v is close to the boundary of
particle in the unit cell (which is needed to apply boundary conditions), so
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that |v| < |rj − ri| for j ̸= i, which allows us to use (11)3 to write the above
as a series of regular spherical waves centred at rj in the form

ujex(v) =
∑
n1

gn1vn1(r) +
∑
n

fn
∑
i ̸=j

∑
n1

Unn1(krj − kri)vn1(kv).

Using the T-matrix formulation, we can now link the scattering coefficients
fn to the coefficients of the regular wave above to get

fn′ =
∑
n1

Tn′n1gn1 +
∑
nn1

fn
∑
i ̸=j

Tn′n1Unn1(krj − kri), (17)

which can be solved for fn. The main issue is how to truncate the series∑
j Unn1(krj) in j, but I think this would work quite well.
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