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Abstract

Here we give details on Green’s functions and Fourier transforms. We mostly

focus on using discrete impulse functions, and also show how to do a discrete Fourier

transform without including the zero frequency ω = 0. The reason for avoiding

ω = 0 is for functions, like Hankel functions, which have a singularity at ω = 0. The

Mathematica notebook DiscreteFourierOffset.nb, in the same directory, shows

how to implement these methods and compares them with known analytic results.
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1 Incident wave

We look to solve the 3D wave equation

L{ϕ}(x, t) =
1

c2
∂2ϕ

∂t2
(x, t)−∇2ϕ(x, t) =

1

c2
B(x, t), (1)

with the conditions

ϕ(x, 0−) = 0, ϕ̇(x, 0−) = 0 and lim
‖x‖→0

ϕ(x, t) = 0, (2)
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where B is the body force∗. To solve this we use the Delta Dirac δ(x) = δ(x)δ(y)δ(z) =

δ(r)/(4πr2) if r is the radius of a spherical coordinate system, and first solve the wave

equation in spherical coordinates

1

c2
∂2g

∂t2
− 1

r2
∂

∂r

(
r2
∂g

∂r

)
=
δ(r)

4πr2
δ(t) (3)

with g(r, t) = 0 for t < 0. This is not trivially solved, as when differentiating r−1 a

distribution appears on the origin. The solution can be found in p. 92 Achenbach (1973)†

.

g(r, t) =
1

4πr
δ(t− r/c). (4)

If we let B(x, t) = δ(x)b(t), then the solution to Eq. (1) without a scatterer, i.e. for the

incident wave, becomes

ϕI(x, t) =

∫
g(x− ξ, t− τ)

1

c2
B(ξ, τ)dξdτ =∫

g(x− ξ, t− τ)
1

c2
δ(ξ)b(τ)dξdτ =

∫
δ(t− τ − r/c) b(τ)

4c2πr
dτ =

b(t− r/c)
4c2πr

. (5)

which is the solution to Eq. (1) because

L{ϕI}(x, t) =

∫
L{g}(x−ξ, t−τ)

1

c2
B(ξ, τ)dξdτ =

∫
δ(x−ξ, t−τ)

1

c2
B(ξ, τ)dξdτ =

1

c2
B(x, t).

Let us adopt the Fourier transform convention:

f(t) =
1

2π

∫ ∞
−∞

f̂(ω)e−iωtdω and f̂(ω) =

∫ ∞
−∞

f(t)eiωtdt.

If we took one frequency g(r, t) = ĝ(r, ω)e−iωt and solved for ĝ with B = c2e−iωtδ(x),

∗This B is technically only a body force for an elastic SH-wave. The interpretation of B depends on
the physical interpretation of ϕ.
†There he changes to spherical coordinates, substitutes ϕ(r, t) = Φ(r, t)/r, and with witchcraft solves

the resulting scalar wave equation, picking only the outgoing wave
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one frequency of c2δ(x)δ(t), the solution using only outgoing waves would be

ĝ(r, ω) =
eikr

4πr
, (6)

with k = ω/c, which after a Fourier transform would give the causal 3D Greens func-

tion (4) as expected.

For the frequency decomposition of the 2D Greens function ĝ2, we imagine that all

functions will be independent of the z coordinate. So to use ĝ in a convolution we need

to first integrate over z:

ĝ2 =

∫ ∞
−∞

ĝ(r, ω)dz =

∫ ∞
−∞

eik
√
r2+z2

4π
√
r2 + z2

dz =
i

4
H

(1)
0 (kr), (7)

where r2 = x2 + y2 and ĝ2 is an outgoing wave solution to

k2ĝ2 +∇2
2ĝ2 = −δ(x)δ(y), (8)

where B̂(x, ω) = c2δ(x) and ∇2 is the gradient in x and y. Note that Graf’s and Gegen-

bauer’s addition formulas are very useful to rewrite any bessel or hankel function.

To calculate g2 we can take the 3D Greens (4) substitute r →
√
r2 + z2 and integrate

in z to get

g2 =

∫ ∞
−∞

δ(ct−
√
r2 + z2)

4π
√
r2 + z2

cdz =
c

2π

Hs(t− |r|/c)√
c2t2 − r2

, (9)

where Hs is the Heavside step function, so that Hs(t− |r|/c) is zero for r > ct.

We can now calculate the 2D incident wave for B(x, t) = δ(x)b(t) by using the proce-

dure (5) for g2 to find

ϕI(x, t) =

∫ ∞
−∞

g2(r, t− τ)
b(τ)

c2
dτ =

∫ max{t, |r|
c
}

|r|/c

1

2πc

b(t− τ)√
c2τ 2 − r2

dτ, (10)

where we changed variables τ ← t− τ so that we can differentiate the above expression in
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t more easily (specially numerically) and assumed that b(−t) = 0 for t > 0. Alternatively,

Eq. (10) can also be written in terms of the Fourier transforms ĝ2(r, ω) and b̂(ω) as

ϕI(x, t) =
1

c2

∫ ∞
−∞

g2(r, τ)b(t− τ)dτ =
1

2πc2

∫ ∞
−∞

e−iωtĝ2(r, ω)b̂(ω)dω. (11)

Assuming that b(t) = 0 for t 6∈ [0, T ], then we turn into a numerical method by

approximating b(t) with its truncated Fourier series.

ϕI(x, t) ≈ 1

Tc2

N∑
n=−N

e−i
2πn
T
tĝ2(r, 2πn/T )b̂nN . (12)

One issue is that ĝ2 has a singularity at ω = 0. More generally, every Hankel function

of the first type has a singularity at ω = 0, which we will deal with carefully in the next

section.

1.1 The offset Discrete Fourier Transform

Approximating an impulse b(t) with its truncated Fourier series bN(t) means that

bN(t) =
1

T

N∑
n=−N

b̂nNe−it
2πn
T , where b̂nN := b̂N

(
2πn

T

)
=

∫ T

0

b(t)ei
2πnt
T dt, (13)

Alternatively we can fix ωn = nδω, so that T = 2π/δω and N = Ω/δω.

We can turn this into the discrete Fourier transform by using only the points

bmN := bN

(
mT

2N + 1

)
=

1

T

N∑
n=−N

b̂nNe−2πi
mn

2N+1 , (14)

for m = 0, 1, . . . , 2N . We can now apply some linear algebra to extract the coefficients

T−1b̂nN of the vectors

(vn)m := e−2πi
mn

2N+1 for n = 0, 1, . . . 2N, (15)
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where vn · v̄j = (2N + 1)δnj, to reach that

b̂nN =
T

(2N + 1)

2N∑
m=0

bmNe2πi
mn

2N+1 , (16)

which is the definition of the discrete Fourier transform.

For wave problems there is often a singularity at ω = 0, a frequency which we used

above. The easiest way to deal with this is just to take b̂0N = 0 which results in the wrong

constant being added to the whole time signal. This wrong constant can be corrected by

attempting to make the signal casual, which works well if we know the time signal is a

pulse. Failing that, the whole frequency range can be offset by constant.

Suppose we wish to approximate b(t) by

b(t) ≈ 1

T

N∑
n=−N

β̂nNe−it(2πn/T+δ), (17)

then we see that by multiplying by eit(2πm/T+δ), for m = −N, . . . , N , on both sides‡ and

integrating we get

β̂nN =

∫ T

0

b(t)eit(2πn/T+δ)dt = b̂

(
2πn

T
+ δ

)
, (18)

which looks like the Discrete Fourier transform of β(t) = b(t)eitδ. In fact substituting b(t)

for β(t) we get

β(t) ≈ 1

T

N∑
n=−N

β̂nNe−i2πnt/T , (19)

from which we know that by taking βmN = β(mT/(2N + 1)) we have that

βmN =
1

T

N∑
n=−N

β̂nNe−2πi
nm

2N+1 and β̂nN =
T

2N + 1

2N∑
m=0

βmN e2πi
nm

2N+1 . (20)

‡Check the proof of converges of the Fourier series and see if it can be adapted to this case.
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The above translated back to b(t) gives us

b

(
mT

2N + 1

)
≈ e−iδ

mT
2N+1

1

T

N∑
n=−N

b̂

(
2πn

T
+ δ

)
e−2πi

nm
2N+1 and (21)

b̂

(
2πn

T
+ δ

)
≈ T

2N + 1

2N∑
m=0

eiδ
mT

2N+1 b

(
mT

2N + 1

)
e2πi

nm
2N+1 , (22)

where m = 0, . . . , 2N for t ∈ [0, T ], and n = −N, . . . , N for ω ∈ [δ− 2πN/T, δ+ 2πN/T ].

In our methods the more important parameter is the maximum frequency Ω ≈ 2πN/T ,

followed by N , so that T = 2πN/Ω, which should be bigger than the period of b(t).

Typically the discrete Fourier, and its inverse, are implemented so that both n and m

run from 0 to 2N . That is the input to a DFT is (β̂0
N , β̂

1
N , . . . , β̂

2N
N ). So we must adjust

Eq. (23) so that n runs from 0 to 2N . Turning to Eq.(22) we see that

b̂

(
−2πn

T
+ δ

)
= b̂−n = b̂−n+2N+1,

which for n = 1, 2, . . . , N gives b̂−1 = b̂2N , b̂−2 = b̂2N−1, . . . , b̂−N = b̂N+1 . We use this to

rewrite Eq. (23) as

bm ≈ e−iδ
mT

2N+1
1

T

2N∑
n=0

b̂ne−2πi
nm

2N+1 . (23)

To be clear, the input vector for DFT would typically be

b̂ = (b̂0, b̂1, . . . , b̂N , b̂−N , . . . , b̂−1),

calculated from ω = δ + (1, 2π/T, . . . , 2Nπ/T,−Nπ/T, . . . ,−π/T ). Below are some ex-

amples.
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The default Mathematica DFT calculates

f̂n = Fourier[f ]n =
1√

2N + 1

2N∑
m=0

fme2πi
nm

2N+1 , (24)

fm = InverseFourier[f̂ ]m =
1√

2N + 1

2N∑
n=0

f̂ne−2πi
nm

2N+1 . (25)

So taking f̂n = b̂n
√

2N + 1/T leads to bm = e−iδ
mT

2N+1fm.

Julia’s fft reverse the role of the forward and back DFT. For Julia’s taking f̂n =

b̂−n(2N + 1)/T leads to bm = eiδ
mT

2N+1fm.

Note that when we cut out the discontinuity from b̂, the Discrete Fourier Transform

will approximate b̂ for some bell shaped curve (and likewise for the time curve). If δ

is to small in comparison to δω this bell shape will be much too big and rounded to

approximate the sharp step from the hankel function. For example, numerically we find

that for δ = 0.01δω are already significantly off, whereas for δ = 0.1δω they results are

always decent (within 1% error when reconstructing the time signal).

Convolution formulas such as (11) can also be written in terms of the Offset Discrete

Fourier Transform. Let

h(t) =
1

c2

∫ ∞
−∞

e−iωtĝ(ω)b̂(ω)dω. (26)

Assuming Ω an N is given, we can represent the above by the inverse of the Offset Discrete

Fourier Transform by using Eq. (23) to get

h

(
mπ

Ω

2N

2N + 1

)
≈ e−iδ

mπ
Ω

2N
2N+1

Ω

2πNc2

N∑
n=−N

e−2πi
nm

2N+1 ĝ
(

Ω
n

N
+ δ
)
b̂
(

Ω
n

N
+ δ
)
. (27)
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